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Foreword 

The advent of the computer age has set in motion a profound shift in our 
perception of science - its structure, its aims and its evolution. Traditionally, 
the principal domains of science were, and are, considered to be mathe
matics, physics, chemistry, biology, astronomy and related disciplines. But 
today, and to an increasing extent, scientific progress is being driven by 
a quest for machine intelligence - for systems which possess a high MIQ 
(Machine IQ) and can perform a wide variety of physical and mental tasks 
with minimal human intervention. 

The role model for intelligent systems is the human mind. The influ
ence of the human mind as a role model is clearly visible in the methodolo
gies which have emerged, mainly during the past two decades, for the con
ception, design and utilization of intelligent systems. At the center of these 
methodologies are fuzzy logic (FL); neurocomputing (NC); evolutionary 
computing (EC); probabilistic computing (PC); chaotic computing (CC); 
and machine learning (ML). Collectively, these methodologies constitute 
what is called soft computing (SC). In this perspective, soft computing is 
basically a coalition of methodologies which collectively provide a body of 
concepts and techniques for automation of reasoning and decision-making 
in an environment of imprecision, uncertainty and partial truth. 

There are two facets of soft computing which are of basic impor
tance. First, the constituent methodologies of SC are, for the most part, 
complementary rather than competitive. And second, the SC methodologies 
are synergistic in the sense that, in general, better results can be achieved 
when they are used in combination, rather than in a stand-alone mode. 
At this juncture, a combination which has highest visibility is that of 
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neura-fuzzy systems. But other combinations, such as neura-genetic sys
tems, fuzzy-genetic systems, and neura-fuzzy-genetic systems are growing 
in visibility and importance. It is logical to expect that eventually almost 
all high MIQ systems Will be of hybrid type. 

This is the backdrop against which the publication of Professor 
Danuta Rutkowska's work,"Neura-Fuzzy Architectures and Hybrid Learn
ing," or NFAHL for short, should be viewed. Professor Rutkowska is one 
of the leading contributors to the theory of neura-fuzzy systems and her 
expertise is reflected in the organization of NFAHL, the choice of subject 
matter and the high quality of exposition. 

Historically, the first paper to consider a facet of neura-fuzzy systems 
was that of S.C. Lee and E.T. Lee, published in 1974. Subsequently, impor
tant contributions were made by Butnariu, Chorayan, Rocha and Kosko. 
But the theory of neura-fuzzy systems as we know it today, owes much to 
the pioneering work of H. Takagi and 1. Hayashi at Matsushita, in the late 
eighties, which won them the basic patent on systems with neuro-fuzzy 
architecture. 

A key issue which is highlighted with keen insight in NFAHL is that 
of parameter adjustment in fuzzy systems using neural network techniques 
and, reciprocally, parameter adjustment in neural networks using fuzzy if
then rules. Furthermore, parameter adjustment in both neural and fuzzy 
systems can be carried out through the use of genetic algorithms. The 
extensive coverage of this basic issue in Professor Rutkowska's work is one 
of its many outstanding features. 

In my view, the natural starting point for parameter adjustment in 
both fuzzy and neural systems is multistage dynamic programming. How
ever, the curse of dimensionality forces resort to gradient methods, which 
lead to backpropagation in the context of neural networks, and similar 
techniques for fuzzy systems which were developed by Takagi-Sugeno, Lin, 
Jang, Wang and others. A closely related technique is that of radial basis 
functions, which has been developed independently in the contexts of both 
neural networks and fuzzy systems. 

In both neural network theory and fuzzy systems theory there is a 
widely held misconception centering on the concept of universal approxima
tion. Specifically, in neural network theory it is accepted without question 
that any continuous function on a compact domain can be approximated 
arbitrarily closely by a multilayer neural network. The same is believed to 
be true for the class of additive fuzzy systems, from which a conclusion 
is drawn that there is an equivalence between neural networks and fuzzy 
systems. 

What is not widely recognized is that universal approximation is 
valid only if the function which is approximated is known. Thus, if one starts 
with a black box which contains a function which satisfies the conditions 
of the approximation theorem, but is not known a priori, it is not possible 
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to guarantee that it approximates to the function in the box to a given 
epsilon. 

The universal approximation theorem is merely a point of tangency 
between the theories of neural networks and fuzzy systems. The agendas 
of the two theories are quite different, which explains why the two theories 
are complementary and synergistic, rather than competitive in nature. The 
highly insightful treatment of the synergism of neural network theory, fuzzy 
systems theory and genetic algorithm is a major contribution of Professor 
Rutkowska's work. 

As was alluded to already, as we move farther into the age of ma
chine intelligence and automated reasoning, what is likely to happen is 
that most high MIQ (Machine IQ) systems will be of hybrid type, em
ploying a combination of methodologies of soft computing - and especially 
neurocomputing, fuzzy logic and evolutionary computing - to achieve su
perior performance. In this perspective, Professor Rutkowska's work lays 
the groundwork for the conception, design and utilization of such systems. 

Professor Rutkowska has authored a book which is an outstanding 
contribution to our understanding and our knowledge of systems which have 
the capability to learn from experience. Dr. Rutkowska and the publisher, 
Physica-Verlag, deserve our thanks and plaudits. 

Lotfi. A.Zadeh 
Berkeley, CA 
May 7,2001 

Professor in the Graduate School, Computer Science Division 
Department of Electrical Engineering and Computer Sciences 
University of California 
Berkeley, CA 94720 -1776 
Director, Berkeley Initiative in Soft Computing (BISC) 
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1 
Introd uction 

The initial idea behind writing this book was to present the new neuro
fuzzy architectures and the novel hybrid learning algorithms, developed as 
results of research into implication-based neuro-fuzzy systems and learn
ing methods. These research projects were conducted in the Department 
of Computer Engineering, Technical University of Czestochowa, Poland, 
and supervised by the author of this book. Some of the conclusions have 
been published in papers contributed by the author, as well as Dr. Robert 
Nowicki and Dr. Artur Starczewski, who are the author's former Ph.D. 
students. Their Ph.D. dissertations [366], [479] were prepared on the basis 
of the above mentioned research. 

However, it became clear that the scope of this book should go far beyond 
the initial idea of its contents. It was obvious that the book ought to provide 
much more information, not only concentrate on the subject of the research 
into implication-based neuro-fuzzy systems and hybrid learning, but also 
exhibit a wider view within the general framework of computational (or 
artificial) intelligence. 

In addition to the first idea, concerning the above mentioned research, the 
intention was to incorporate some results from the author's other papers 
and books on neuro-fuzzy systems and intelligent systems. The main reason 
for this was that these books [434], [420] have been published in Polish, and 
are not accessible to many interested readers. Therefore, there are parts in 
this book referring to those in Polish. However, in fact, only a few sections 
have such references. Generally speaking, the subject of this book pertains 
to intelligent systems, and the research, mentioned above, can be treated 
as a tiny portion in this realm. 
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It is easy to notice that the title of this book - "Neuro-Fuzzy Architec
tures and Hybrid Learning" - is strictly related to the research correspond
ing to the findings presented in [366], [479], and in the researcher's papers. 
However, as explained in Chapter 7, the results concerning both directions 
of the research, i.e. neuro-fuzzy architectures and hybrid learning, combined 
together, constitute a special case of Intelligent Computational Systems, 
described in [420]. Thus the object of this book could be expressed as fol
lows: Neuro-Fuzzy Architectures + Hybrid Learning = Intelligent 
Systems. 

Chapter 7 also clarifies the difference between intelligent systems in the 
sense of computational and artificial intelligence. Since this book addresses 
intelligent systems, some information about expert systems, is included in 
this chapter. In addition, the latest research concerning perception-based 
systems, developed by Prof. Lotfi A. Zadeh, is also presented, with reference 
to intelligent systems. This research was preceded by his work on computing 
with words, and earlier on calculus of fuzzy rules. All these problems, as 
well as related issues on granulation and fuzzy graphs, introduced by Prof. 
Zadeh, are depicted in this book. Moreover, the basic knowledge of fuzzy 
sets and fuzzy logic, from the earliest papers of Prof. Zadeh, is provided in 
Chapter 2. In the same chapter, fuzzy systems are described in detail. 

Since neuro-fuzzy systems, which are combinations of fuzzy systems and 
neural networks, are one of the key subjects of this book, a section on neural 
networks has been included in Chapter 3. It mainly contains information 
about the types of networks which are used in the neuro-fuzzy systems 
presented in this book and which influence the hybrid learning procedures. 
The difference between fuzzy neural networks and fuzzy inference neural 
networks is also explained in this chapter, within the framework of neuro
fuzzy systems. 

Neuro-fuzzy architectures are described in Chapters 4 and 5. They refer, 
respectively, to the well-known and most often applied Mamdani approach, 
and the logical approach which is employed very seldom. The latest results 
concerning these architectures, mentioned at the beginning, are included 
mainly in Chapter 5. However, the former chapter also contains some novel 
results. 

Chapter 6 is devoted to hybrid learning. It consists of sections on gradient, 
genetic, and clustering algorithms, as well as combinations of these. In this 
chapter, the new algorithms proposed in [479] are also presented. Moreover, 
other methods introduced to generate fuzzy IF-THEN rules are outlined. 

Research combining fuzzy systems (FSs), neural networks (NNs) , and 
genetic algorithms (GAs) has grown rapidly in recent years. Earlier, these 
methods had been developed independently. Now, they are considered 
within the framework of Soft Computing, and the trend is to employ them 
jointly to create intelligent systems. Thus the contents of this book may be 
viewed as the application of soft computing methods in the area of art~ficial 
(or computational) intelligence. 



www.manaraa.com

1. Introduction 3 

Many researchers contributed to the current results in the field related 
to the contents of this book. The long list of reference includes their names 
associated with the publications cited in the book. Professor L.A. Zadeh, 
who is known as the" Father of Fuzzy Logic" , and the pioneers who initiated 
research into neural networks, and genetic algorithms, are mentioned with 
regard to their publications. The outstanding contributions of Prof. E. 
Ruspini and Prof. J. Bezdek to fuzzy clustering, which is a very important 
method employed in hybrid learning, should also be emphasized. However, 
a number of researchers who made significant contributions to neuro-fuzzy 
and intelligent systems, are not cited in this book, since it is impossible to 
refer to all of them. The interested reader can find the related papers and 
books in other bibliography lists. 

The author would like to especially acknowledge the contribution of Prof. 
E. Czogala to fuzzy and neuro-fuzzy systems, in particular the logical ap
proach. His book, entitled" Fuzzy and Neuro-Fuzzy Intelligent Systems" 
[101], with Prof J. Leski as co-author, was published recently. It was Prof. 
Czogala's final book. The contents are closely related to this book. The 
work of Prof. Czogala was an inspiration to the research resulting in this 
book. Therefore, the author dedicates her book to Prof. Ernest Czogala. 

There are more persons whose important contributions to the contents of 
this book should be acknowledged. One of them, with reference to neural 
networks, is Prof. Ryszard Tadeusiewicz, who can be called the "Father 
of Neural Networks" in Poland. He is the author of many books on neural 
networks (see e.g. [490]), as well as a large number of papers. He is one ofthe 
founders of the Polish Neural Network Society, and currently is the Vice
President of this Society. He is also one of the initiators of the Conference 
on Neural Networks and Their Applications, which has changed its name, 
and is known as the Conference on Neural Networks and Soft Computing. 

There are many people whom the author would like to thank for their 
help, encouragement, and understanding. Presented below is a special ac
knowledgment. 

Acknowledgments. 
As the author, I would like to express my sincere gratitude to Prof. 

Janusz Kacprzyk, the Editor of the book series "Studies in Fuzziness and 
Soft Computing" , for his encouragement to publish the book. 

I greatly appreciate the discussions with Prof. Lotfi A. Zadeh concerning 
this book. His comments and suggestions have improved its contents. 

I also thank Dr. Robert Nowicki for his help in the process of preparing 
the final form of this book. 

The words of special thankfulness are directed to my husband for creating 
a supportive environment for writing the book, and to my children for 
tolerating my absence at home. 

Finally, I would like to thank the Committee for Scientific Research in 
Poland for the financial support (Project No.7 Tl1A 017 20). 
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2 
Description of Fuzzy Inference Systems 

Approximate reasoning, based on fuzzy sets and fuzzy logic, has been suc
cessfully employed in fuzzy inference systems. These systems are used in 
many practical applications, mainly as fuzzy controllers, but also as other 
knowledge-based systems such as expert systems, fuzzy classifiers and so 
on. Fuzzy systems have been recently combined with neural networks and 
genetic algorithms to create different kinds of neuro-fuzzy systems and 
intelligent systems. This chapter presents an overview of fuzzy sets, ap
proximate reasoning, and fuzzy systems. 

2.1 Fuzzy Sets 

This section deals with the fundamentals of fuzzy sets introduced by Zadeh 
[559] in 1965. The concept of fuzzy sets can be viewed as a generalization 
of ordinary (crisp) sets. The theory of fuzzy sets and the foundations of 
fuzzy logic were developed by Zadeh based on the traditional set theory 
and classical logic, respectively. The literature on the fuzzy set theory as 
well as the fuzzy logic includes e.g. the books [246], [353], [253], [112], [102]' 
[234], [235], [259], [583]. 

2.1.1 Basic Definitions 

Starting from the concept of a fuzzy set, proposed by Zadeh, basic defini
tions concerning fuzzy sets are presented in this section, including a fuzzy 
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set of type 2. The extension principle, which plays an important role in 
the fuzzy set theory, is also depicted. First, a fuzzy set is defined as follows 
[559]: 

Definition 1 Let X be a space of points (objects), with a generic element 
of X denoted by x. A fuzzy set A in X is characterized by a membership 
function J-tA(X) which associates with each point x a real number in the 
interval [0,1] representing the grade of membership of x in A 

A = {(X,J-tA (x)) jX E X} (2.1) 

where 

J-tA (x) : X -t [0,1] (2.2) 

The nearer the value of J-tA(X) to unity, the higher the grade of membership 
of x in A. If J-tA(X) = 1, then x fully belongs to A. If J-tA(X) = 0, then x 
does not belong to A. Space X is called the universe of discourse. 

A fuzzy set A is completely determined by the set of pairs (2.1). When 
the universe of discourse is a finite set, that is X = {Xl, ... ,xn}, a fuzzy 
set A can be represented as 

n 

A = L:J-tA (Xi) jXi = J-tA (Xl) jXl + ... + J-tA (Xn) jXn (2.3) 
i=l 

or equivalently 

(2.4) 

When the universe of discourse X is not finite, a fuzzy set A can be ex
pressed as 

or 

A = { J-tA (x) 
Jx x 

(2.5) 

(2.6) 

respectively. Symbols E, +, J in formulas (2.3)-(2.6) refer to set union 
rather than to arithmetic summation. Similarly, there is not any arithmetic 
division in these formulas. This symbolic notation is employed in order to 
connect an element and its membership value. The former notation, used in 
Equations (2.3) and (2.5), has been suggested by Zadeh as corresponding 
to the similar notations applied, e.g. in veristic sets (see the example of 
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ethnicity in Section 7.4, page 223). However, the latter, used in Equations 
(2.4) and (2.6), is more convenient to employ in fuzzy relations described 
in Sections 2.1.3 and 2.1.4. 

Figure 2.1 shows examples of two membership functions which charac
terize fuzzy sets A and B in the universe of discourse X = R, that is the 
real line. The membership function illustrated in Fig. 2.2 represents a fuzzy 
set in the universe of discourse X = R 2 • In this case each point x in X is a 
vector x = [Xl, X2] C R2 with the associated membership grade in the in
terval [0,1]. Although the same notation is applied, the components Xl, X2 

of the vector x should be distinguished from the points Xl, X2, . .. ,Xn E X 
in Equations (2.3) and (2.4). 

,u{x) 

x 

FIGURE 2.1. Examples of membership functions in R 

FIGURE 2.2. An example of membership functions in R2 

Since a fuzzy set is completely determined by its membership function, it 
is possible to simplify the notation by using A(x) instead of J-LA (x), unless 
it is necessary to distinguish between a fuzzy set and its membership func
tion. Thus the membership functions J-LA and J-LB portrayed in Fig. 2.1 are 
denoted as fuzzy sets A and B in Fig. 2.6. This simpler notation becomes 
more often applied in the literature and is suggested to use. However, in 
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this book the original notation for a membership function, introduced in 
Definition 1, is mostly employed. In spite of being less compact, this no
tation clearly points out that operations on fuzzy relations (Section 2.1.4) 
as well as fuzzy implications (Section 2.3.4) refer to membership functions. 
The simpler notation is convenient to apply in the neuro-fuzzy architec
tures, whose a general form is portrayed in Fig. 3.10, in Section 3.3. In this 
case, the elements of the first layer represent fuzzy sets but, in fact, they 
realize their membership functions. 

Different shapes of membership functions can be used in various appli
cations. Gaussian and triangular, as well as trapezoidal membership func
tions, are most often employed in fuzzy systems. 

Other definitions concerning fuzzy sets are presented below. 

Definition 2 The support of a fuzzy set A, denoted by supp A, is the set 
of points in X at which the membership function JLA(X) is positive 

supp A = {x E Xj JLA (x) > O} (2.7) 

Definition 3 A fuzzy singleton is a fuzzy set A whose support is a single 
point x in the universe of discourse X. 

It should be noted that a fuzzy singleton A whose support is a point x 
can be written, according to formulas (2.3) and (2.4), respectively, as 

A = JLA (x) Ix (2.8) 

and equivalently 

A= JLA(X) 
x 

(2.9) 

where JLA(X) is the membership function of x in X. 
Equations (2.3) and (2.4), as well as (2.5) and (2.6), can be viewed as 

the union of its constituent fuzzy singletons. The union corresponds to the 
connective OR. 

Singletons are employed in fuzzy systems to fuzzify crisp dataj see Sec
tion 2.3.1. 

Definition 4 The core of a fuzzy set A defined in the universe of discourse 
X, denoted by core(A), also referred to as kernel or nucleus, is the set of 
points in X at which the membership function JLA(X) equals 1, that is 

core(A) = {x E XjJLA (x) = I} (2.10) 

Definition 5 The height of a fuzzy set A defined in the universe of dis
course X, denoted by hgt( A), is the maximal value of its membership func
tion JLA(X), that is 

hgt(A) = sup JLA (x) (2.11) 
xEX 
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Definition 6 A fuzzy set A is called a normal fuzzy set if and only if 
the maximal value of its membership function equals 1, which means that 
hgt (A) = 1. 

If a fuzzy set is not normal, it can be normalized by altering all the 
membership values in proportion (dividing by the height of this fuzzy set) 
so as to make the largest value 1. 

Definition 7 A fuzzy set A defined in the universe of discourse X is an 
empty set, denoted A = 0, if and only if its membership function /-LA (x) = 0 
for all x E X. 

Definition 8 A fuzzy set A defined in the universe of discourse X, which 
we shall assume to be a real Euclidean N-dimensional space, is convex if 
and only if 

/-LA (AXI + (1 - A) X2) ? min [/-LA (Xl) ,/-LA (X2)J 

for all Xl and X2 in X and all A in [0, 1J. 

(2.12) 

The fuzzy sets represented by the membership functions depicted in 
Figs. 2.1 and 2.2 are convex fuzzy sets. Examples of non-convex fuzzy sets 
will be shown in Fig. 2.6, in Section 2.1.2. 

Definition 9 A fuzzy set A is a fuzzy number if the universe of discourse 
X is R and the following criteria are fu~filled: the fuzzy set A is convex, 
normal, the membership function of the fuzzy set /-LA(X) is piecewise con
tinuous, and the core of the fuzzy set consists of one value only. 

The fuzzy sets illustrated in Fig. 2.1 are examples of fuzzy numbers. 

Definition 10 A fuzzy set A is a fuzzy interval if the universe of discourse 
X is R and the following criteria are fulfilled: the fuzzy set A is convex, 
normal, and the membership function of the fuzzy set /-LA(X) is piecewise 
continuous. 

It should be noted that a fuzzy interval is a fuzzy set with the same 
criteria as those defined for fuzzy numbers, but with the exception that 
the core is no longer restricted to one point only. For both fuzzy numbers 
and fuzzy intervals the universe of discourse is the real line R. Thus fuzzy 
numbers and fuzzy intervals are special cases of fuzzy sets. 

Sometimes fuzzy intervals are treated as fuzzy numbers, for example 
trapezoidal membership functions. A triangular fuzzy number is a special 
case of such an interval. 

Fuzzy numbers play an important role as input and output values of 
fuzzy systems (see Section 2.3). 

Definition 11 Two fuzzy sets A and B are equal, written as A = B, if 
and only if their membership functions are equal, that is /-LA (x) = /-LB (x) 
for all x in the universe of discourse X. 
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Presented below is the definition of a-cuts, also called a-level sets of a 
fuzzy set A, proposed by Zadeh [560], [567]. 

Definition 12 The crisp (non-fuzzy) set of elements that belong to the 
fuzzy set A in X at least to the degree of a is called an a-level set (or 
a-cut) and defined by 

Ac. = {x EX: JLA(X);) a} Va E [0,1] (2.13) 

If the condition JLA (x) ;) a in (2.13) is replaced by JLA (x) > a, the 
set Ac. will be called a strong a-level set, or a strong a-cut. Figure 2.3 
shows a graphical interpretation of a-cuts in X = Rj for different a-levels: 
al,a2,a3,a4. It is easy to notice that 

x 

FIGURE 2.3. lllustration of a-level sets (a-cuts) 

The a-cuts make it possible to exhibit elements x E X that typically 
belong to a fuzzy set Aj with membership values which are greater than a 
certain threshold a E [0,1]. The concept of a-cuts was applied in [404] to 
the algebra of level fuzzy sets. Taking into account only the most significant 
parts of fuzzy set supports (see Definition 2), computation time as well 
as computer memory size was saved in many practical applications. Now 
a-cuts are also employed in fuzzy arithmetic, for example with reference 
to fuzzy neural networks [56], [141]. 

AB an alternative to Definition 8, we may say that a fuzzy set A in the 
n-dimensional Euclidean vector space Rn is convex if and only if each of 
its a-cuts is a convex set [259]. Figure 2.4 portrays a convex fuzzy set in 
R2 expressed by its a-cuts. 

In [567] Zadeh introduced the extension principle. It can also be found 
in [559] in an implicit form. Further work concerning this principle was 
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FIGURE 2.4. Illustration of a-cuts of a convex fuzzy set in R2 

presented in [541]. The extension principle is very important for fuzzy set 
theory. It provides a general method for extending crisp mathematical con
cepts to a fuzzy framework. Suppose that f is a function that maps points 
in space X to points in space Y, that is 

(2.14) 

and A is a fuzzy subset of X expressed by Equation (2.4). Then, the ex
tension principle asserts that 

(2.15) 

H more than one element of X is mapped by f to the same element y E Y, 
then the maximum of the membership grades of these elements in the fuzzy 
set A is chosen as the membership grade for y in f (A). Hno element x E X 
is mapped to y, then the membership grade of yin f (A) is zero. 

According to Definition 1, a fuzzy set is characterized by a membership 
function which associates with each point (member of the fuzzy set) its 
grade of membership, expressed by a real number in the interval [0,1]. 
In this case, the membership grades are precise numbers. However, there 
are situations where uncertainty can exist about the membership grades 
themselves. Therefore, the concept of a type 2 fuzzy set, as well as higher 
type fuzzy sets, was introduced by Zadeh [567]. In this context, the fuzzy 
sets presented in this chapter, and in the whole book, refer to type 1 fuzzy 
sets, but we call them, simply, fuzzy sets. A type 1 fuzzy set is a special 
case of a type 2 fuzzy set. The definition formulated in [334] states the 
following: 

Definition 13 A fuzzy set of type 2 is defined by a fuzzy membership func
tion, the grade (that is, fuzzy grade) of which is a fuzzy set in the unit 
interval [0,1]' rather than a point in [0,1]. 
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The interested reader can find more detailed, formal explanations con
cerning fuzzy sets of type 2 in the literature [334], [335], [231], [445]. 

According to the definition proposed in [567], the membership function of 
a fuzzy set of type 1 ranges over the interval [0, 1], the membership function 
of a fuzzy set of type 2 ranges over fuzzy sets of type 1, the membership 
function of a fuzzy set of type 3 ranges over fuzzy sets of type 2, etc., 
for fuzzy sets of type 4, 5, ... . However, while fuzzy sets of type 2 have 
been studied and applied by several researchers, e.g. [540], [240], [511], 
only fuzzy sets of type 1 are commonly used. Interval type 2 sets, which 
are the simplest kind of type 2 fuzzy sets, have also been considered in the 
literature [186], [152], [505]. 

In Section 2.1.2, basic operations, i.e. complementation, union, intersec
tion, etc., on fuzzy sets (of type 1) are presented. To define such operations 
for fuzzy sets of type 2, it is natural to make use of the extension principle 
and interval-valued membership functions; see [567]. More details concern
ing operations on type 2 fuzzy sets can be found in [237]. 

2.1.2 Operations on Fuzzy Sets 
The original theory of fuzzy sets was formulated in terms of the comple
ment, union, and intersection operators, defined as generalizations of the 
corresponding operators for crisp (non-fuzzy) sets. 

First, the definition of the complement operation, proposed by Zadeh 
[559], is presented for a fuzzy set A in the universe of discourse X. 

Definition 14 The complement of a fuzzy set A, denoted by ..4, is defined 
by 

J-LJ,. (x) = 1 - J-LA (x) (2.16) 

for all x E X. 

The complement of the fuzzy set A is specified by a function 

c: [0,1]-+ [0,1] (2.17) 

which assigns a value c (J-LA (x)), according to Equation (2.16), to each mem
bership grade J-LA (x). This assigned value is interpreted as the membership 
grade of the element x in the fuzzy set corresponding to the negation of the 
concept represented by the fuzzy set A. For example, if A is a fuzzy set of 
tall men, the complement of this fuzzy set is the fuzzy set of men who are 
not tall. Obviously, there are many elements that can have some non-zero 
degree of membership in both the fuzzy set and its complement [259]. 

The function c must satisfy at least the two following requirements in 
order to represent the complement operation [259]: 

• c (0) = 1 and c (1) = 0, which means that c behaves as the ordinary 
complement for crisp sets (boundary conditions) 
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• For all a,b f[O, 1], if a < b, then c(a) ~ c(b), where a and b rep
resent degrees of membership. This means that c is monotonic non
increasing function. 

Many functions fulfil these requirements; see e.g. [258]. However, the com
plement (2.16) is most often applied. Figure 2.5 illustrates this operation, 
assuming that A is a normal fuzzy set (Definition 6). 

,u(x) 

x 

FIGURE 2.5. Complement operation according to Definition 14 

The classical union and intersection operations of ordinary subsets of X 
have also been extended for fuzzy sets and the following definitions have 
been proposed by Zadeh [559]. 

Definition 15 The union of two fuzzy sets A and B with respective mem
bership functions /-LA (x) and /-LB (x) is a fuzzy set denoted by Au B whose 
membership function is given by 

VxEX (2.18) 

or, in abbreviated form 

/-LAUB (x) = /-LA (x) V /-LB (x) (2.19) 

Definition 16 The intersection of two fuzzy sets A and B with respective 
membership functions /-LA (x) and /-LB (x) is a fuzzy set denoted by An B 
whose membership function is given by 

/-LAnB (x) = min [/-LA (x), /-LB (x)] VxEX (2.20) 

or, in abbreviated form 

/-LAnB (x) = /-LA (x) 1\ /-LB (x) (2.21) 

The union and intersection operations have the associative property, 
which means that AU(B U C) = (A U B)UC and An(B n C) = (A n B)nC 
for fuzzy sets A, B, C in X. 
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The union operation of fuzzy sets A l , A2 ... , An defined in the universe 
of discourse X is denoted by Ui'=l Ai and is given by the following extension 
of Definition 15 

(2.22) 

for all x in X. 
The intersection operation of fuzzy sets Al, A2 ... , An defined in the 

universe of discourse X is denoted by ni'=l Ai and is given by the following 
extension of Definition 16 

(2.23) 

for all x in X. 
It is easy to notice that when the range of membership values is restricted 

to the set {O, I}, functions (2.18) and (2.20) perform in exactly the same 
way as the corresponding operators for crisp sets. Thus the union and in
tersection of fuzzy sets, defined by these formulas, are clear generalizations 
of the union and intersection operators of crisp sets. Definitions 14, 15, 16 
constitute a consistent framework for the theory of fuzzy sets, formulated 
by Zadeh [559]. This theory is usually referred to as possibility theory and 
the operators defined by formulas (2.16), (2.18), (2.20) are called standard 
operations of fuzzy set theory [259]. The standard operations, however, 
are not the only possible way to extend classical set theory consistently 
to fuzzy set theory. Zadeh and other authors have suggested alternative 
or additional definitions concerning the operations on fuzzy sets. Different 
fuzzy negation functions have been studied by many researchers (see e.g. 
[307], [371], [538], [109]). However, as mentioned before, the standard fuzzy 
negation (2.16) is most often used in various applications. 

A general class of intersection operators for fuzzy sets is defined by so
called triangular norms or T-norms, and a general class of union opera
tors is defined, analogously, by S-norms (T-conorms). Triangular norms 
were introduced by Schweizer and Sklar [458], [459] to model distances in 
probabilistic metric spaces. These functions are extensively applied in fuzzy 
sets theory as logical connective AND, which represents the intersection 
operator [7]. Similarly, the S-norms are widely employed to model logical 
connective OR, which represents the union operator. The triangular norms 
and T-conorms can be characterized as follows [112], [383], [583], [141], 
[519]. 

Definition 17 A triangular norm T is a function of two arguments 

T: [0,1] x [0, 1] ~ [0,1] (2.24) 
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which satisfies the following conditions for a, b, c, dE [0,1] 

Monotonicity: T (a, b) :::::; T (c, d) ; a :::::; c; b:::::; d (2.25) 

Commutativity: T (a, b) = T (b, a) (2.26) 

Associativity: T (T (a, b), c) = T (a, T (b, c)) (2.27) 

Boundary conditions: T(a,O) = 0; T(a, 1) = a (2.28) 

Moreover, every triangular norm fulfils the following inequality 

Tw (a, b) :::::; T (a, b) :::::; min (a, b) 

where 

Tw (a, b) = {::: : :: i 
o if a, b =11 

The T-norm, depicted in Definition 17, will also be denoted as 

T 
T(a,b) = a * b 

Definition 18 An 8-norm is a function of two arguments 

8: [0,1] x [0,1] --t [0,1] 

which satisfies the following conditions for a, b, c, dE [0,1] 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

Monotonicity: 8 (a, b) :::::; 8 (c, d) ; a :::::; c; b:::::; d (2.33) 

Commutativity: 8 (a, b) = 8 (b, a) (2.34) 

Associativity: 8 (8 (a, b), c) = 8 (a, 8 (b, c)) (2.35) 

Boundary conditions: 8 (a, 0) = a; 8 (a, 1) = 1 (2.36) 

Moreover, every 8-norm fulfils the following inequality 

max (a, b) :::::; 8 (a, b) :::::; 8w (a, b) (2.37) 

where 

{
a if 

8w (a, b) = b if a = 0 
o if a,b =I 0 

b=O 
(2.38) 

The 8-norm, depicted in Definition 18, will also be denoted as 

(2.39) 
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The T-norms and T-conorms are related in the sense of logical duality. 
Any T-conorm (S-norm) can be derived from a T-norm through the fol
lowing formula [6] 

T (a, b) = 1 - S (1- a, 1 - b) (2.40) 

which is related to the De Morgan law in set theory. 
The basic examples of T-norms and S-norms, most frequently used as 

AND and OR connectives in fuzzy logic, are presented in Table 2.1. The 
first row of the table illustrates the T-norm and S-norm applied by Zadeh 
[559] as the intersection and union operations on fuzzy sets, respectively. 
The second and last rows contain so-called algebraic and bounded T-norms 
and the corresponding S-norms. The S-norms are T-conorms in the sense 
of duality. The algebraic and bounded operators are also known by the 
names probability and Lukasiewicz, respectively [222]. 

TABLE 2.1. Basic examples of triangular norms 

Name T-norm S-norm 
Zadeh min(a,b) max(a,b) 
Algebraic ab a+b-ab 
Bounded max(a+b-l,O) min(a + b, 1) 

Many other examples of T -norms and S-norms can be found in the lit
erature (see e.g.[383], [583], [260], [141], [101]). The interested reader can 
be also refer to [258], [358]. 

Figure 2.6 portrays intersection and union operations on two fuzzy sets 
A and B with Gaussian and triangular membership functions, /LA (x) and 
/L B (x), respectively, based on the T -norm and S-norm operators depicted in 
Table 2.1. The operations introduced by Zadeh are illustrated in Figs. 2.6 (a) 
and (b). Operations based on algebraic and bounded T-norms and S-norms 
are shown in Figs. 2.6 (e) and (f), respectively. 

It should be noted that the fuzzy sets An B presented in Figs. 2.6 (a) 
and (c), as well as the fuzzy set AUB shown in Fig. 2.6 (f) are convex fuzzy 
sets, according to Definition 8. The fuzzy set An B depicted in Fig. 2.6 (c) 
and the fuzzy sets AU B illustrated in Figs. 2.6 (b) and (d) are examples 
of non-convex fuzzy sets. 

All T-norms and S-norms can be extended through associativity to n > 2 
arguments, ai, for i = 1, ... ,n, and denoted as follows 

(2.41) 

and 

(2.42) 
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AuB 
JI JI 

a) b) 
x x 

AuB 
JI JI 

c) d) 
x x 

AuB 
)1 JI 

e) f) 
x x 

FIGURE 2.6. Intersection and union operations: a) A n B defined by Equation 
(2.20)j b) AUB defined by Equation (2.18)j c) AnB based on algebraic T-normj 
d) A U B based on algebraic S-normj e) A n B based on bounded T -normj f) 
A U B based on bounded S-norm 

T-norms satisfy the basic properties of the intersection operator, while 
S-norms fulfil the properties of the union operator. These properties are: 
monotonicity, commutativity, associativity, and boundary conditions. 

Since the values of the membership functions are real numbers in the 
interval [0,1], T-norms and S-norms are considered to be the most general 
intersection and union operators of fuzzy sets, respectively. 

The fuzzy union and intersection operations presented by Equations (2.22) 
and (2.23), respectively, as well as other S-norms and T-norms, are exam
ples of aggregation operations on fuzzy sets, generally defined by a function 

g: [0, It -t [0,1] (2.43) 

for some n ~ 2. When this function is applied to n fuzzy sets AI, A2 ... ,An 
in X, it produces an aggregated fuzzy set A by operating on the member
ship grades of each x E X in the aggregated sets. Thus 

/.LA. (x) = 9 (/.LA 1 (x) ,/.LA2 (x) , ... ,/.LAn (X)) (2.44) 

for each x EX. In order to qualify as an aggregation function, 9 must satisfy 
the boundary conditions, that is 9 (0, 0, ... ,0) = ° and 9 (1,1, ... ,1) = 1, 
and be monotonic nondecreasing in all its arguments. In addition, the 
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following requirements are usually employed to characterize aggregation 
operations: 9 is a continuous function, and 9 is a symmetric function in 
all its arguments. However, these requirements are not essential [259]. A 
large class of aggregation operators can be constructed as a combination 
of T-norms and S-norms. The interested reader is referred to [258], [50]. 

As in the case of ordinary (crisp) sets, the containment operation plays 
an important role in fuzzy set theory. 

Definition 19 A fuzzy set A is contained in a fuzzy set B (or, equivalently, 
A is a subset of B, or A is smaller than or equal to B) if and only if 
/-LA (x) ::;; /-LB (x). Formally, 

A c B <=> /-LA (x) ::;; /-LB (x) (2.45) 

for all x E X. 

Definition 19 presents the strict inclusion proposed by Zadeh [559]. Other 
definitions of inclusion have been introduced in the literature, for example 
the so-called weak inclusion [112] or an inclusion of A in B at point x, 
where instead of the strict inclusion, a grade of inclusion can be considered 
[383]. The grade of the inclusion equals 1 in the case of complete (strict) 
inclusion. 

Now let us consider other kinds of operations on fuzzy sets that are of 
use in the representation of linguistic hedges [287], [562], [563]. Hedges are 
linguistic modifiers which can be used to modify the meaning of fuzzy sets 
(see Section 2.2.3). Two operations, called concentmtion and dilation, yield 
new fuzzy sets with suppressed or elevated grades of membership. 

Definition 20 The concentmtion of a fuzzy setA inX, denoted by CON(A) , 
is defined by 

/-LCON(A) (x) = (/-LA (x))2 (2.46) 

for all x E X. 

Definition 21 The dilation of a fuzzy set A in X, denoted by DIL(A), is 
defined by 

/-LDIL(A) (x) = (/-LA (x))O.5 (2.47) 

for all x E X. 

The effect of dilation is the opposite of that of concentmtion. Other 
similar operations can be found in the literature, e.g. [563]. The concen
tration and dilation operations defined by Equations (2.46) and (2.47), 
respectively, are illustrated in Fig. 2.7. 
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,u(x) 

x 

FIGURE 2.7. Concentration and dilation operations 

2.1.3 Fuzzy Relations 
In Sections 2.1.1 and 2.1.2 only fuzzy sets with membership functions of 
one variable have been considered. However, fuzzy sets can be extended to 
have higher dimensional membership functions. These multi-dimensional 
fuzzy sets are normally referred to as fuzzy relations [222]. The concept 
of fuzzy relations was introduced by Zadeh [559] as a natural extension 
of the concept of crisp relations. Both kinds of relations are based on the 
definition of the Cartesian product. 

Definition 22 The Cartesian product of two crisp sets X and Y, denoted 
by X x Y, is the crisp set of all ordered pairs such that the first element 
in each pair is a member of X and the second element is a member of Y. 
Formally, 

XxY={(X,y);XEX andyEY} (2.48) 

The Cartesian product of n crisp sets Xl, X 2, ... , X n, denoted by Xl x 
X 2 X ..• X X n , is the following generalization of formula (2.48) 

Xl X X 2 x··· X Xn = {(XI,X2, ... ,xn) ;Xi E Xi for i = 1,2, ... ,n} 
(2.49) 

A crisp relation represents the presence or absence of association, in
teraction, or interconnectedness between the elements of two or more crisp 
sets [259]. 

Definition 23 A crisp relation among crisp sets X and Y is a crisp subset 
of the Cartesian product X x Y. It is denoted by R(X, Y). Thus 

R(X,Y)CXxY (2.50) 

Ordinarily, a relation is defined as a set of ordered pairs, e.g. the set of 
all ordered pairs of real numbers x and y such that x ~ y. It should be 
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noted that the Cartesian product X x Y is the collection of ordered pairs 
(x, y), where x E X and y E Y. 

Definition 23 can be extended to describe· a crisp relation among crisp 
sets Xl, X2, ... ,Xn which is a crisp subset of the Cartesian product Xl x 
X2 x··· X X n , denoted by R(Xl,X2, ... ,Xn ), so 

(2.51) 

The relation is itself a set, so the basic set concepts such as contain
ment or subset, union, intersection, and complement can be applied without 
modifying the relations. 

The concept of crisp relations can be generalized to allow for various 
degrees or strengths of relation or interaction between elements. Degrees of 
association can be represented by membership grades in a fuzzy relation in 
the same way as degrees of set membership are represented in fuzzy sets. 

Definition 24 A fuzzy relation R from a crisp set X to a crisp set Y is a 
fuzzy subset of the Cartesian product X x Y. Formally, 

R= [ /-LR(X,y) 
}XXy (x,y) 

(2.52) 

where x EX, Y E Y, and /-LR (x, y) is a membership function of fuzzy set R. 

Let us compare formulas (2.52) and (2.6). As mentioned earlier, a fuzzy 
relation can be viewed as a multi-dimensional fuzzy set. Equation (2.52) ex
presses the two-dimensional fuzzy set defined over the universe of discourse 
X x Y. For a finite universe of discourse, it can be presented in the form of 
Equation (2.4). Of course, the fuzzy relation can be expressed according to 
Equations (2.5) and (2.3), respectively, instead of formulas (2.6) and (2.4). 
However, the notation used in Equation (2.52) is more convenient for the 
multi-dimensional case, especially for presenting the operations on fuzzy 
relations in Section 2.1.4. It is obvious that the general form of Equations 
(2.1) and (2.2), for the point (x, y) in X x Y with the membership function 
/-LR (x, y), also expresses the fuzzy relation (2.52). 

A relation matrix is very useful to represent the fuzzy relation in the 
case of a finite universe of discourse. The elements of the matrix are values 
of the membership function. These elements correspond to the pairs (x, y), 
where x E X and y E Y. 

More generally, a fuzzy relation R among crisp sets X I ,X2,'" , Xn is a 
fuzzy subset of the Cartesian product Xl x X2 x··· X Xn ; so Definition 24 
can be extended as follows 

R= [ /-LR(Xl,X2,'" ,xn ) 

}X1 XX2 X",xxn (XI,X2,'" ,xn ) 
(2.53) 

where Xi E Xi, for i = 1,2, ... ,n, and /-LR (Xl, X2, ... ,xn ) is a membership 
function of fuzzy set R. 
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Thus a fuzzy relation is a fuzzy set defined on the Cartesian product 
of crisp sets Xl x X2 X ... X X n , where tuples (Xl, X2, ... ,xn ) may have 
varying degrees of membership within the relation. The membership grades, 
represented by values in the interval [0,1], indicate the strength of the 
relation between the elements of the tuple. 

Any relation (crisp or fuzzy) between two sets X and Y is known as a 
binary relation. 

Analogously to the Cartesian product of crisp sets, the Cartesian product 
of fuzzy sets has been defined in fuzzy set theory. 

Definition 25 The Cartesian product of two fuzzy sets A and B in the 
universe of discourse X and Y, respectively, is denoted by A x B and defined 
by use of their membership functions J-LA (x) and J-LB (y) as follows 

J-LAxB (x, y) = min [J-LA (x), J-LB (y)] = J-LA (x) /\ J-LB (y) (2.54) 

or 

J-LAxB (x, y) = J-LA (x) J-LB (y) 

for all x E X and y E Y. 

(2.55) 

Thus the Cartesian product A x B is a fuzzy set in the universe of 
discourse X x Y, which is the Cartesian product of the crisp sets X, Y, 
defined by formula (2.48), with the membership functions (2.54) or (2.55). 
In other words, the Cartesian product A x B is a fuzzy set of ordered pairs 
(x,y), x EX, Y E Y, with the grade of membership of (x,y) in X x Y 
given by Equations (2.54) or (2.55). In this sense, A x B is a fuzzy relation 
from X to Y; an example can be found in [563]. It is easy to notice that 
when A and B are non-fuzzy (crisp) sets then the fuzzy set A x B reduces 
to the conventional Cartesian product of crisp sets. 

The following extension of Definition 25 is used to present the Cartesian 
product of n fuzzy sets. The Cartesian product of fuzzy sets AI, A 2, ... ,An 
in Xl! X 2, ... ,Xn , respectively, denoted by Al x A2 X ... x An is defined 
by use of their membership functions J-LAl (Xl) , J-LA2 (X2) , ... , J-LAn (xn) as 
follows 

or 

J-LA1XA2x .. ·xAn (Xl, X2,'" ,Xn) = J-LAl (Xl) /\ J-LA2 (X2) /\ ... /\ J-LAn (xn) 
(2.56) 

J-LA1xA2X .. ·xAn (Xl,X2,'" ,xn) = J-LAl (Xl) J-LA2 (X2) ... J-LAn (xn) (2.57) 

for all Xl E Xl! X2 E X2, . .. ,Xn E X n . 

Example 1 Let AI, . .. ,An be fuzzy sets in the universes of discourse 
Xl, . .. ,Xn = R, characterized by Gaussian membership functions 

(2.58) 
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fori = 1, ... , n. Figure 2.8 shows the Gaussian membership function (2.58). 
According to formulas (2.57) and (2.58), the Cartesian product of the fuzzy 
sets A!, ... , An, in the universe of discourse Xl X, .. X Xn = Rn, is a fuzzy 
set Al x ... X An with the following membership function 

n 

JLA1x ... xAn (Xl,'" ,Xn) = IIJLA; (Xi) 
i=l 

[ (x-xf (X-X)] =exp -
a 2 

(2.59) 

where x = [X!, ... ,xn)T E Xl X .•. X Xn = Rn, and Xl, ... ,xn, which 
constitutes the vector x = [Xl, ... , Xnf E X I X ... X Xn = R n, are centers 
of the Gaussian membership functions, while a is a pammeter defining the 
width of the membership functions (see Fig. 2.8). In the case of two fuzzy 
sets AI,A2' that is, for n = 2, the membership function JLA1xA2 (XI,X2), 
given by Equation (2.59), looks like that in Fig. 2.2, where A = Al X A2, 
and x = [XI,X2f. 

FIGURE 2.8. Gaussian membership function 

Example 2 Let A!, A2 be fuzzy sets in the universes of discourse 
XI ,X2 = R, chamcterized by Gaussian membership functions (2.58). 
Figure 2.9 illustmtes the Cartesian product Al X A2 defined by minimum 
opemtion, i.e. Equations (2.54) and (2.56); x = [XI,X2f, where Xl,X2 E R. 

2.1.4 Operations on Fuzzy Relations 
As described in Section 2.1.3, fuzzy. relations are fuzzy sets in product 
spaces. Fuzzy relations in different product spaces can be combined with 
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J.l A (X) 

FIGURE 2.9. Cartesian product defined by minimum 

each other by a composition operation. Various kinds of composition opera
tions have been suggested [583], though these differ in their results and also 
with respect to their mathematical properties. The max-min composition 
(or the sup-min composition), proposed by Zadeh [560], [563], has become 
the best known and the most frequently used one. 

Definition 26 If R is a relation from X to Y and P is a relation from Y 
to Z, then the composition of Rand P is a fuzzy relation denoted by R 0 P 
and defined by 

1 sUPYEY [min [t!R (x, y) ,t!P (y, z)]] 
RoP= 

XxZ (x, z) 
(2.60) 

where x E X, Y E Y, z E Z, and t!R(X,y), t!p(y,z) are membership 
functions of Rand P, respectively. 

If the domains of the variables x, y, and z are finite sets, then symbol J in 
Equation (2.60) is replaced by symbol L:, according to formulas (2.4), (2.6), 
and sup is replaced by max. In this case we have the max-min composition 
instead of the sup-min composition described by Equation (2.60). Max
product composition was defined by Zadeh [560] in the same way as the 
max-min composition of Rand P in Definition 26, except that min is 
replaced by the arithmetic product. 

The sup-min composition given by formula (2.60) can be generalized 
by taking any other kinds of T-norm (see Section 2.1.2) instead of min 
operation [222]. 

It was mentioned in Section 2.1.3 that since relations are sets, operations 
such as containment, union, intersection, and complement can be applied to 
relations. It is very easy to use these operations on fuzzy relations defined 
on the same Cartesian product space. However, it is not possible to apply 
these operations directly to fuzzy relations defined on different product 
spaces. Therefore, two very important operations on fuzzy relations, called 
projection and cylindrical extension, have been introduced by Zadeh [566], 
[567]. The whole definition of projection seems quite complicated, but is 
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actually very simple. The projection reduces the dimensions of the product 
space by taking the supremum of the membership function over the domains 
of the variables corresponding to the dimensions to be eliminated. The 
following definition presents the projection operation [111], [222]. 

Definition 27 Let R be a fuzzy relation on the Cartesian product X = 
Xl X X 2 X ... X X n . Let (il ,i2 , ... ,ik) be a subsequence of(I,2, ... ,n) 
and let (jl,jz, ... ,jl) be the complementary subsequence of(I,2, ... ,n). 
Let V = Xi! X X i2 X ..• X X ik . The projection of R on V is defined by 

proj (Rj V) = fv SUPXjl'Xj2"" 'Xiz [JlR (Xl, X2,··· , Xn)] 

}" (Xill Xi2' ... , Xik) 
(2.61) 

where Jl R (Xl, X2, ..• , Xn) is the membership function of fuzzy relation R. 

Definition 27 is much simpler in the case of binary relations. Let R be 
defined on Y x Z. Then 

. (R Z) 1 SUPy [JlR (y, z)] pro) j = 
Z Z 

(2.62) 

where y E Y, z E Z, and JlR (y, z) is the membership function of R. The 
projection operation (2.62) brings a binary relation to a fuzzy set (unary 
relation). 

The projection operation is almost always used in combination with the 
cylindrical extension operation, which is more or less the opposite of the 
projection, by extending fuzzy sets to binary fuzzy relations and binary re
lations to ternary relations, etc. The cylindrical extension basically works 
as follows. Let C be a fuzzy set defined on Y, and let R be a fuzzy relation 
defined on Y x Z. In this case it is not possible to take the intersection of 
C and R, but if the universe of discourse of C is extended to Y x Z, it be
comes possible. The following definition presents the cylindrical extension 
operation. 

Definition 28 Let X = Xl X X 2 X ... X Xn and let Q be a fuzzy relation 
on V = Xi! X X i2 X ... X X ik , where (i1 ,i2,'" ,ik) is a subsequence of 
(1,2, ... , n). The cylindrical extension of Q to the Cartesian product space 
X is defined by 

(2.63) 

where JlQ (Xi! , Xi2 , ... , Xik) is the membership function of fuzzy relation Q. 

In the case of binary relations, Definition 28 is much simpler. Let C be 
a fuzzy set defined on Y. The cylindrical extension of Con Y x Z is the 
set of all tuples (y, z) E Y x Z with the membership Jlc (y), that is 

ce (Cj Y x Z) = f Jlc (y) (2.64) 
}YXZ (y,z) 
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It is easy to see that the projection and cylindrical extension operations 
play an important role in the composition of fuzzy relations (Definition 26). 

The composition of a fuzzy set and a fuzzy relation is a special case of 
the operation presented in Definition 26. It is a combination of cylindrical 
extension and projection [111], [222]. 

Definition 29 Let A be a fuzzy set defined on X and R be a fuzzy relation 
defined on X x Y. Then the composition of A and R resulting in a fuzzy 
set B defined on Z is given by 

B = A 0 R = proj (( ce (A; X x Y) n R) ; Y) (2.65) 

According to Definition 26 the composition of the fuzzy set and the fuzzy 
relation presented in Definition 29 is expressed as follows 

B = A 0 R = i sUPxEX [min [/-L~ (x) ,/-LR (x, y)]] (2.66) 

or in the general case the membership function of fuzzy set B is given by 

(2.67) 

where I can be any type of T-norm (not necessarily min). 
The composition of the fuzzy set A and fuzzy relation R, defined by 

Equation (2.65), is illustrated in Fig. 2.10. The fuzzy set A and the fuzzy re
lation R are presented in Figs. 2.10 (a) and (c), respectively. Figure 2.10 (b) 
portrays the cylindrical extension of A on X to Cartesian product X x Y. 
Figure 2.10 (d) shows the union of the cylindrical extension ce (A) and fuzzy 
relation R. The result of the composition A 0 R, defined as the projection 
of ce (A) n R on Y, is depicted in Fig. 2.10 (e). 

2.2 Approximate Reasoning 

Reasoning with fuzzy logic is not exact but rather approximate. Based on 
fuzzy premises and fuzzy implications, fuzzy conclusions are inferred. This 
kind of fuzzy inference has been applied in fuzzy controllers and other fuzzy 
systems. It should be noticed that much human reasoning is performed by 
use of fuzzy concepts. Approximate reasoning is thus suitable for intelligent 
systems, which try to imitate human intelligence. 

2.2.1 Compositional Rule of Inference 

In [563] Zadeh introduced the compositional rule of inference, which plays 
the most important role in approximate reasoning. Fuzzy conditional state
ments in the form: IF A THEN B, denoted for short by A ===? B, with the 
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a) b) 
x 

x 

ce(A)nR 

d) 

B=proj(ce(A)I\R) 

e) 
y 

FIGURE 2.10. Illustration of the composition of fuzzy set A in X and fuzzy 
relation R in X x Y 

fuzzy sets A (antecedent) and B (consequent), were considered as fuzzy 
relations. The basic rule of inference in classical logic, i.e. modus ponens, 
was generalized in [567] and viewed as a special case of the compositional 
rule of inference. 

The generalized modus ponens, defined in [567], can be depicted as follows 

premise A' 
implication A=>B (2.68) 
conclusion I A' 0 (A => B) I 

where A', A, B are fuzzy sets. The above statement differs from the tra
ditional modus ponens because fuzzy sets are used instead of propositional 
variables and A' is different from A. The well known rule of inference in clas
sicallogic, based on modus ponens, is: IF A is true (premise) and A implies 
B (implication), then B is true (conclusion). According to the generalized 
modus ponens, the conclusion inferred based on the premise A' (fuzzy set) 
and the implication A => B (fuzzy relation) differs from B and is ob
tained as the composition of A' and A => B. Thus the compositional rule 
of inference leads to the generalized modus ponens. Since A' is a fuzzy set 
and A => B is a fuzzy relation, the conclusion is determined by use of 
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Definition 29. In this case, symbols A and B in Equations (2.65), (2.66), 
(2.67) should be replaced by A' and B', respectively. 

It is worth remembering that in classical propositional calculus, the ex
pression IF A THEN B, where A and B are propositional variables, is 
written as A ==> B, with the implication ==> regarded as a connective 
which is defined by the following truth table [202], [563] 

IAIBIIA==>BI 
1 1 1 
1 0 0 (2.69) 
0 1 1 
0 0 1 

The propositional expressions A ==> B and A VB, where the latter 
means NOT A OR B, have the identical truth table (2.69), so the latter 
represents the implication. The fuzzy implication called Boolean, binary, 
Kleene-Dienes, or Dienes-Rescher, has been defined based on this expres
sion. 

2.2.2 Implications 
The compositional rule of inference, which can be considered to be a special 
case of the generalized modus ponens, presented in Section 2.2.1, is of ma
jor importance in approximate reasoning. The inference based on this rule 
depends on the implication A ==> B. Various implication functions have 
been widely studied by many authors with reference to the implication re
lation existing in the generalized modus ponens rule (see e.g. [501], [311], 
[92]). Presented below is the definition of an implication function [501]. 

Definition 30 A continuous function 

I: [0,1] x [0,1] -+ [0,1] (2.70) 

is an implication function iff V a, a', b, b', c frO, 1] verifies the following 
properties 

P1 : I f a ~ a' then I (a, b) ~ I (a', b) (2.71) 

P2: If b~b' thenI(a,b)~I(a,b') (2.72) 

P3: I(O,a) = 1 (2.73) 

P4: I(I,a) = a (2.74) 

P5: I (a, I (b, c)) = I (b, I (a, c)) (2.75) 

Properties P3, P 4, and P5 are called falsity, neutrality, and exchange prin
ciples, respectively. The well known symbol iff stands for if and only if. 
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TABLE 2.2. Basic examples of implication functions 

Name Implication 
Kleene-Dienes max(I- a,b) 
Lukasiewicz min(I,I - a + b) 
Zadeh max(I- a,min (a, b)) 
Reichenbach I-a+ab 

Goguen min (I,~) if a#O 
1 otherwise 

Godel 
1 if a~b 
b otherwise 
I-a if b=O 

Dubois-Prade b if a=I 
1 otherwise 

Table 2.2 illustrates basic examples of implication functions. It is easy 
to show that the implications listed in the table satisfy conditions (2.71)
(2.75). The first implication, called Kleene-Dienes, as well as Dienes-Rescher, 
Boolean, or binary, implication corresponds to the propositional expres
sion A VB, where A denotes negation of A. This expression fulfills truth 
table (2.69), so it represents the well known implication in classical logic. 

Implications studied in the literature are classified in the following 
groups [92]: 

• Strong implications (S-implications) 

• Residual implications (R-implications) 

• Quantum mechanics implications (QM-implications) 

Strong implications correspond to the definition of an implication in clas
sical Boolean logic, that is, expressed as A ===> B == A V B. The Kleene
Dienes implication is a typical example of the implications belonging to 
this group. Others are the Reichenbach and Dubois-Prade implications. 

Residual implications are obtained by residuation of a continuous T-norm. 
The Lukasiewicz, Goguen, and Godel implications are examples of these. 
However, the Lukasiewicz implication belongs to both the strong implica
tion and residual implication groups. 

Quantum mechanics implications correspond to the definition of impli
cation in Quantum logic, that is, expressed as A ===> B == A V (A /\ B). The 
Zadeh implication is an example of the QM-implications. 

Many others, not belonging to any of these well defined groups, have 
been introduced in the literature on fuzzy logic in order to be employed as 
implication operators [336], [255], [68], [93], [92]. Different implications are 
also considered in [113]. 
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2.2.3 Linguistic Variables 

The concept of linguistic variables was introduced by Zadeh [563], [567] to 
provide a basis for approximate reasoning. In [567], apart from a formal 
definition, the author described this concept in the following way: "By a 
linguistic variable we mean a variable whose values are words or sentences 
in a natural or artificial language. For example Age is a linguistic variable if 
its values are linguistic rather than numerical, i.e., young, not young, very 
young, quite young, old, not very old and not very young, etc., rather than 
20, 21, 22, 23, .... " The author also explained: " The motivation for the 
use of words or sentences rather than numbers is that linguistic character
izations are, in general, less specific than numerical ones. For example, in 
speaking of age, when we say John is young, we are less precise than when 
we say John is 25. In this sense, the label young may be regarded as a 
linguistic value of the variable Age, with the understanding that it plays 
the same role as the numerical value 25 but is less precise and hence less 
informative." However, "by providing a basis for approximate reasoning, 
that is a mode of reasoning which is not exact nor very inexact, such logic 
may offer a more realistic framework for human reasoning than the tradi
tional two-valued logic." The last sentence refers to fuzzy logic, proposed 
by Zadeh: "Treating Truth as a linguistic variable with values such as true, 
very true, completely true, not very true, untrue, etc. leads to what is called 
fuzzy logic." Fuzzy logic is an extension of multivalued logic in which the 
truth values are linguistic variables. 

In Section 2.2.1 the compositional rule of inference uses the implication 
A ===> B, treated as a fuzzy relation, which corresponds to the fuzzy condi
tional statement IF A THEN B. Typical examples of the statement of this 
kind are [563]: 

IF large THEN small (2.76) 

IF slippery THEN dangerous (2.77) 

which can be treated as abbreviations of the following statements 

IF a is large THEN b is small (2.78) 

IF the road is slippery THEN driving is dangerous (2.79) 

In the above statements A is interpreted as a fuzzy predicate (fuzzy 
set), which may be viewed as the equivalent of the membership function 
of the fuzzy set A. In these examples, large and slippery are labels of the 
fuzzy set A, small and dangerous are labels of the fuzzy set B. The first 
two statements of the form IF A THEN B are the abbreviations of the 
statement IF x is A THEN y is B, where x and y are linguistic variables. 
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In statement (2.78) the names of the linguistic variables x and yare a and b, 
while in statement (2.79) these names are the road and driving, respectively. 
The values of the linguistic variables a and b, in statement (2.78), are large 
and small, respectively. The values of the linguistic variables the road and 
driving, in statement (2.79), are slippery and dangerous, respectively. 

The propositions x is A, y is B, of the antecedent and consequent parts 
of the IF-THEN statement may be read as x has property A, and y has 
property B, where A and B are names of fuzzy subsets of the universes of 
discourse X and Y, respectively. 

The concept of linguistic variables plays a pivotal role in fuzzy logic, as 
a stepping-stone to the concept of fuzzy rules [563]; see also Section 2.2.4. 
Fuzzy rules provide an alternative method of characterization when the 
dependencies are imprecise or when a high degree of precision is not re
quired. They have been widely employed in various practical applications, 
especially in fuzzy controllers. The IF-THEN statements (2.78) and (2.79) 
can be treated as examples of fuzzy rules. 

As we have seen, the linguistic variables can take words, which are usu
ally labels of fuzzy sets, as their values. Of course, values of the linguistic 
variables can be either words or numbers. A real (crisp) number can be 
treated as a special case of a fuzzy set (fuzzy number) with its support 
equal to this crisp number (see Definitions 9 and 2); such a fuzzy set is 
called a singleton (see Definition 3). 

The formal definition of the linguistic variables proposed by Zadeh [567] 
was formulated as follows. 

Definition 31 A linguistic variable is characterized by a quintuple 

(i,~(i) ,U,G,M) 

in which i is the name of the variable; ~ (i) is the term-set of i, that is, 
the collection of its linguistic values; U is a universe of discourse; G is a 
syntactic rule which generates the terms in ~ (i); and M is a semantic rule 
which associates each linguistic value with its meaning, i. e. a fuzzy subset 
ofU. 

In [567] the author explained that a linguistic variable is structured in the 
sense that it is associated with two rules: a syntactic rule and a semantic 
rule. The former specifies the manner in which the linguistic values in the 
term-set of the variable may be generated. With regard to this rule, our 
usual assumption will be that the terms in the term-set of the variable 
are generated by a context-free grammar. The latter one is a semantic 
rule which specifies a procedure for computing the meaning of any given 
linguistic value. In this connection, we observe that a typical value of a 
linguistic variable, e.g., not very young and not very old, involves what 
might be called the primary terms, e.g., young and old, whose meaning 
is both subjective and context-dependent. We assume that the meaning 
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of such terms is specified a priori. In addition to the primary terms, a 
linguistic value may involve connectives such as and, or, either, neither, 
etc.; the negation not; and the hedges such as very, highly, more or less, 
completely, quite, fairly, extremely, somewhat, etc. The connectives, the 
hedges and the negation may be treated as operators which modify the 
meaning of their operands in a specified, context-independent fashion. 

The negation not, the connectives and and or, as well as the hedges, 
and other terms which enter into the representation of the values of lin
guistic variables may be viewed as labels of various operations defined in a 
fuzzy subset of the universe of discourse. These operations are complement, 
intersection, union, concentration, dilation, etc. (see Section 2.1.2). Exam
ples which illustrate computation of the meaning of values of a linguistic 
variable are presented in [563]. 

As an example, let us consider a linguistic variable named Age. In this 
case, according to Definition 31, £ = Age, with the universe of discourse 
U = [0,100] that is the interval of 0 to 100 years. Values of this linguistic 
variable might be: young, very young, not very young, more or less old, 
very old, etc. These values constitute the term-set ~ (£) of £ = Age, i.e. 
~(Age) = VI + V2 +"', where VI = young, V2 = very young, .... A 
particular V, that is, a name generated by G, is called a term. If it is 
necessary to make it clear that ~ is generated by a grammar G, then ~ 
will be written as ~ (G). The meaning M (V), of a term V, is usually used 
interchangeably with V, although according to Definition 31, V is distinct 
from M (V). When we say that the term young is a value of Age, it should 
be understood that the actual value is M (Vt} and that ~ is merely the 
name of the value [567]. Figure 2.11 illustrates the values of the linguistic 
variable Age. The hedges very and more or less are realized by means of 
concentration and dilation operations, respectively (see Definitions 20 and 
21). For example, applying the linguistic hedge very to the fuzzy set labeled 
as young, we obtain a new fuzzy set representing the concept of very young 
persons. The negation operation (Definition 14) is employed in order to get 
the value not very young, treated as the complement of very young. 

The linguistic hedge very can be also realized by a so-called shifted hedge 
instead of the concentration operator which is an example of a class of 
powered hedges. Combinations of both types of hedges are possible, too. 
Figure 2.12 portrays two values of the linguistic variable Age, namely old 
and very old, where the former is the same as in Fig. 2.11 but the latter is 
obtained from the old value by use of the shifted hedge operator. Thus, the 
very old value is represented by a membership function which equals one 
starting from a greater crisp value of Age than the membership function 
which corresponds to the old value. Concerning Age, this kind of represen
tation of the hedge is more suitable that the concentration operator. For 
example, if the hedge very old is realized by the concentration operator, 
a person of 80 will be treated as very old (with the membership function 
equaled to one), as well as old (with the same membership value). However, 
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FIGURE 2.11. Values of the linguistic variable Age 

if the hedge very old is realized by the shifted operator, the same person 
will be considered as old (with the membership function equaled to one) 
but as very old with the membership function less than one. Of course, the 
linguistic values of Age, shown in Figs. 2.11 and 2.12, should be viewed as 
examples, especially the linguistic hedges. Everybody can propose slightly 
different shapes of the membership functions which would represent the 
linguistic values of Age. 

0.5 

o 

FIGURE 2.12. Linguistic values: old and very old 

With reference to the linguistic hedges (linguistic modifiers) the following 
hedges are distinguished in the literature [222]: powered hedges, shifted 
hedges, and scaled hedges. 

The powered hedges [583] modify the membership function J-lA (x) of a 
fuzzy set A in X by using the exponent 

J-lhedge(A) (x) = (J-lA (x)t (2.80) 

for all x EX, and p > O. Depending on the exponent value, the modifier 
realizes a concentration (p > 1) or dilation (p < 1) of the fuzzy set A. If 
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p = 1, operation (2.80) does not cause any modification. The concentration 
and dilation operators, presented in Definitions 20 and 21, are special cases 
of the powered hedges, where p = 2 and p = 0.5, respectively. The former 
is usually interpreted as very and the latter one as more or less. Powered 
hedges are characterized by the fact that the support and core (see Defini
tions 2 and 4) of a modified fuzzy set are not changed by these operations, 
since the membership values equal 0 and 1 are not changed by an exponent 
operation with the value p > O. 

The shifted hedges [287) shift the original membership function to the 
left or right along the universe of discourse. They are defined by 

/Lhedge(A) (x) = /LA (x - r) (2.81) 

where r denotes the magnitude of the shift. The value of r can be positive 
as well as negative. In [392) the shifted hedges have been applied in order to 
modify a trapezoidal shaped membership function. In this case a positive 
value of r shifted the left side of the membership function and a negative 
value of r shifted the right side, so the fuzzy set was concentrated, resulting 
in the linguistic hedge very. In a similar way, by an inverse operation, dila
tion of a fuzzy set can be realized, for example, to represent the linguistic 
hedge more or less. 

AB mentioned before, powered hedges and shifted hedges can be combined 
to perform the following operation [101) 

/Lhedge(A) (x) = (/LA (x - r))P (2.82) 

for all x E X, and p > 0, where r denotes the magnitude of the shift. 
The scaled hedges have been defined in order to combine the advanta

geous features of the powered hedges and the shifted hedges. The general 
form of the function proposed as this kind of modifier is 

/Lhedge(A) (x) = /LA (c(x - rA) + rA) = /LA (ex + (1- c)rA) (2.83) 

where c is a scaling factor and r A is a reference point for the modified 
fuzzy set A. The same values which are usually chosen for the exponent 
p, when the powered hedges are employed, can serve as the values of the 
scaling factor c. Thus, we choose c = 2 for the linguistic modifier very, and 
c = 0.5 for the linguistic hedge more or less. The reference point, r A, is a 
characteristic point of the fuzzy set A, for instance, the center of the core of 
the membership function. The scaled modifiers preserve the original shape 
of the basic membership function. An example can be found in [222). 

From the point of view described in [562), a hedge may be regarded as 
an operator which transforms the fuzzy set representing the meaning of a 
linguistic variable into the fuzzy set representing the meaning of the trans
formed fuzzy set. The hedges allow a larger set of values to be generated 
for a linguistic variable from a small collection of primary terms. 
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2.2.4 Calculus of Fuzzy Rules 

The concept of a linguistic variable, described in Section 2.2.3, was a 
stepping-stone to the concept of a fuzzy IF-THEN rule, introduced in [563]. 
Fuzzy rules and their manipulation refer to the so-called calculus of fuzzy 
rules [574], the largely self-contained part of fuzzy logic, often used in 
practical applications. The concept of a fuzzy rule is very important in 
situations when the dependencies described by these rules are imprecise 
or a high degree of precision is not required. For example, let us assume 
now that x and y are real-valued variables, whose dependency function f 
is coarsely described in words by the following fuzzy rules 

IF x is very small THEN y is large 

IF x is small THEN y is medium 

IF x is medium THEN y is small (2.84) 

IF x is large THEN y is medium 

IF x is very large THEN y is large 

where small and large are linguistic values of x and y. It is easy to notice 
that the same function can be represented by a different number of rules 
that are similar to the collection (2.84). The more linguistic values are 
distinguished the less is the coarseness of the dependency expressed by 
function f. It will be illustrated in the next section (see Fig. 2.16). 

Fuzzy rules may be classified as categorical or qualified [574]. The former 
ones are widely used in control and industrial applications. A basic type of 
these rules has the form 

IF Xl is Al AND ... AND Xn is An 

THEN YI is BI AND ... AND Ym is Bm (2.85) 

where AI, ... ,An and B I , ... ,Bm are labels of the linguistic values of 
Xl, ... ,Xn and YI, ... ,Ym, respectively. The following rule is an example 
of the categorical type of rules expressed by formula (2.85) 

IF Temperature is high AND Pressure is low 

THEN Volume is high (2.86) 

The qualified rules, as the name suggests, contain one or more qualifica
tions. Examples of this type of rules might be 

IF x is A THEN Y is B unless x is C 
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IF x is A THEN (y is B) is likely 

IF x is A THEN «y is B) is very true ) 

usually (IF x is A THEN y is B) 

In the above examples, there are instances of a rule with exceptions, as 
well as probability-qualification, truth-qualification, usuality-qualification. 

Qualified rules, especially probability-qualified rules, play an important 
role in knowledge-based and expert systems. These kinds of rules are not 
usually employed in fuzzy control and industrial applications. Generally, 
we can say that it is much more difficult to deal with qualified rules than 
with the categorical ones. 

A significant part of the calculus of fuzzy rules refers to the semantics 
of the rules. One aspect of semantics that is essential in the application 
of fuzzy logic concerns the concept of a fuzzy graph, presented in the next 
section. There are two separate issues with regard to the semantics of fuzzy 
rules: the meaning of a single rule and the meaning of a collection of rules. 
The meaning of an elementary categorical rule of the form 

IFxisA THENyisB (2.87) 

can be defined in two distinct ways. In practical applications of fuzzy logic, 
the following way is predominant 

IF x is A THEN y is B -) (x, y) is A x B (2.88) 

where the arrow stands for "translates into" and A x B denotes the Carte
sian product of fuzzy sets A and B; see Definition 25. In this expression, the 
Cartesian product A x B plays the role of a fuzzy constraint on the joint 
variable (x, y). Therefore, this way of interpretating the fuzzy IF-THEN 
rule is called a joint constraint interpretation. 

Another way of interpretating the rule in the form of Equation (2.87) is as 
an instance of a genuine logical implication (see Section 2.2.2). The meaning 
of rule (2.87), in the case of the Lukasiewicz implication (see Table 2.2), 
can be expressed as follows 

IF x is A THEN y is B -) (x I y) is ce (1) ffice(B) (2.89) 

where x I y denotes "y conditioned on x"; the complement of A is denoted 

as 1, and ce ( 1), ce (B) are cylindrical extensions of 1, B, respectively; 

to the Cartesian product of X, Y, assuming that (x, y) E X x Y, see 
Definition 28; symbol ffi in Equation (2.89) is explained as follows, with 
reference to the Lukasiewicz implication 

JLce(A:)EBce(B) (x, y) = min (1,1 - JLA (x) + JLB (y)) (2.90) 
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This interpretation of the fuzzy IF-THEN rule is called a conditional con
straint interpretation. 

The elementary rule (2.87) has been chosen for simplicity. Of course, the 
joint and conditional constraint interpretations of the rule (2.87) can be 
extended to rule (2.85). The conditional constraint interpretation may be 
explained, analogously, for other genuine implications presented in Table 2.2. 

Now, let us consider a collection of fuzzy IF-THEN rules, also in the 
simple form (2.87), that is 

IF x is Ak THEN y is Bk for k = 1, ... , N (2.91) 

where N is the number of rules. 
If the joint constraint interpretation is used for each rule (2.91), then the 

constraints associated with the rules are combined disjunctively. Thus, the 
meaning of the collection of rules, for k = 1, . .. ,N, is expressed as 

N 

IF x is Ak THEN y is Bk --+ (x, y) is L:Ak X Bk (2.92) 
k=l 

where the summation denotes disjunction. 
Formula (2.92) can be easily illustrated using the concept of a fuzzy 

graph, presented in the next section. The Cartesian products A k X Bk, for 
k = 1, ... ,N, may be treated as fuzzy points of the fuzzy graph and the 
graph may be viewed as a disjunctive superposition of the fuzzy points. 

If the conditional constraint interpretation is applied for each rule (2.91), 
then the constraints associated with the rules are combined conjunctively. 
In this case, the meaning of the collection of rules, for k = 1, ... ,N, is 
formulated as follows 

IF x is Ak THEN y is Bk --+ (x I y) is k~l (ce (Ak) EB ce (Bk)) 

(2.93) 

on the assumption that the Lukasiewicz implication is used. 
The fact that the fuzzy IF-THEN rules can be interpreted in two distinct 

ways has created some confusion, especially in the literature on fuzzy con
trol. This is explained in [574]. The problem is that the Cartesian product 
violates some of the basic conditions which a genuine implication must 
fulfil. In Section 2.3 two different approaches to fuzzy systems are consid
ered: the Mamdani approach and the logical approach. The former employs 
the joint constraint interpretation of the rules, while the latter applies the 
conditional constraint interpretation. 

According to [574], one of the most basic problems in the calculus of fuzzy 
rules is the following: Given a collection of fuzzy IF-THEN rules (2.91), 
what is the value of y corresponding to x is A, where A need not be equal 
to any Ak, k = 1, ... , N ? This is a problem of interpolation. The solu
tion can be obtained, making use of the compositional rule of inference 
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(Section 2.2.1), based on Definition 29. The inference may be illustrated 
by means of the concept of a fuzzy graph [574] . It is much easier to find 
the solution for the joint constraint interpretation of the rules. This is the 
reason why this way of rule interpretation is employed in most practical ap
plications of fuzzy logic. However, the conditional constraint interpretation 
of the rules is suitable for many tasks, especially in expert systems. 

2.2.5 Granulation and Fuzzy Graphs 

Linguistic variables, described in Section 2.2.3, are concomitant with the 
concept of granulation [569], [574], [576], [577]. As the author explained in 
[574], granulation, in fuzzy logic, involves a grouping of objects into fuzzy 
granules, with a granule being a clump of objects drawn together by simi
larity. In effect, granulation may be viewed as a form of fuzzy quantization, 
which in turn may be seen as an instance of fuzzy data compression. We 
can also say that quantization (non-fuzzy) is crisp granulation (see Sec
tion 3.1.9). In this case the granules are not fuzzy. In order to illustrate the 
difference, let us consider quantization (granulation) of domains X and Y 
of variables x and y, respectively, according to rules (2.84). Let us assume 
that these variables take real values in [0, xmax] and [0, Ymax], respectively. 
The values of variables x are granulated to obtain five values: very small, 
small, medium, large, very large, but for variable Y there are only three 
values: small, medium, large (see Figs. 2.13 and 2.14). Thus, values of a lin
guistic variable may be treated as granules whose labels are the linguistic 
values of the variable. 
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small medium 

"-

-~ 
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Xmax X very 
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o ~<, _ ~~;;;; > 

small medium large Y max Y 

FIGURE 2.13. Crisp granulation 

Models of information granulation in which the granules are crisp play 
an important role in many methods and approaches. However, crisp granu
lation does not reflect the fact that humans usually incorporate fuzzy 
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FIGURE 2.14. Fuzzy granulation 

granulation when they granulate and manipulate information. Thus the 
theory of fuzzy information granulation is inspired by human reasoning 
which is fuzzy rather than crisp. The foundation of this theory comes from 
the concept of linguistic variables and fuzzy IF-THEN rules. The machinery 
of fuzzy information granulation plays an important role in the applications 
of fuzzy logic. In fact, it underlies most of the successes of fuzzy logic in 
dealing with real-world problems. 

The foundations of the theory of fuzzy information granulation are 
mathematical in nature. The departure point of this theory is the concept 
of generalized constraint [572]. A granule is characterized by a generalized 
constraint which defines it. The principal types of granules are: possibilis
tic, veristic and probabilistic [576]; this is also explained in Section 7.4. 
The theory of fuzzy information granulation provides a basis for computing 
with words (see the next section). 

The concept of a fuzzy graph was introduced in [561], and developed in 
[564], [567], [568]. Then, in [574], [576], the so-called calculus of fuzzy graphs 
was considered. The concept of fuzzy graphs plays a key role in fuzzy logic 
and is employed in most of its applications. The theory of fuzzy information 
granulation also underlines fuzzy graphs. 

Usually, a fuzzy graph approximates a function or a relation. This is 
illustrated in Fig. 2.15. The fuzzy graph is defined by a disjunctive super
position of fuzzy points, which are Cartesian products of corresponding 
fuzzy sets. 

A fuzzy graph may be represented as a collection of fuzzy IF-THEN 
rules, and vice versa [576], [577]. As an example, let us consider fuzzy 
rules (2.84) and notice that these rules and the fuzzy graph illustrated in 
Fig. 2.16 mutually correspond to each other. The fuzzy rules constitute the 
coarse description of the dependency given by function f, and Fig. 2.16 
shows the fuzzy graph of function f. This function is approximated by the 
fuzzy graph. This graph has been portrayed based on fuzzy granulation of 
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FIGURE 2.15. Approximate representations of: a) functions, b) relations; by 
fuzzy graphs 

the domains of variables x and y, depicted in Fig. 2.14. These granules are 
the linguistic values in the rules (2.84). 

As mentioned in Section 2.2.4, a fuzzy graph can illustrate the meaning 
of a collection of fuzzy IF-THEN rules (2.91), expressed in the form of 
Equation (2.92), for k = 1, ... , N. This fuzzy graph portrays the relation, 
corresponding to the collection of the rules, as a disjunctive representa
tion of the fuzzy points that are Cartesian products of fuzzy sets. This 
fuzzy graph is similar to that shown in Fig.2.16. However, in this case, 
the linguistic values of x, y are Ak, Bk, respectively, for k = 1, ... , N. 
In addition, the shape of the function that describes the relation may be 
different and it depends on the fuzzy sets A k, Bk. 

According to [577], an expression of the form A k X Bk, where A k, Bk are 
linguistic values (words), can be referred to as a Cartesian granule. In this 
sense, the fuzzy graph, considered above, may be viewed as a disjunction 
of Cartesian granules. Generally, a word is assumed to be a label of a 
fuzzy granule. In this sense, values of a linguistic variable can be treated 
as granules whose labels are the linguistic values of the variable. Thus, the 
calculus of fuzzy graphs, with the theory of fuzzy information granulation, 
leads to the concept of computing with words, described in the next section. 

Representations of an n-ary fuzzy graph in two equivalent forms: (a) as a 
collection of fuzzy IF-THEN rules; and (b) as a disjunctive combination of 
Cartesian products, constitute the basis of the calculus of fuzzy graphs. The 
problems whose solution can be considered are similar to the tasks known 
in the standard calculi. A simple example is the problem of maximization 
of a fuzzy graph. This can be solved by employing the technique of a-cuts 
(see Definition 12). The solution, in the form of a fuzzy set, is presented in 
[576]. Another is a problem of finding the intersection of two fuzzy graphs 
[574]. This is related to the problem of interpolation, mentioned in Sec-
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FIGURE 2.16. Fuzzy rules (2 .84) represented by a fuzzy graph 

tion 2.2.4. Strictly speaking, the interpolation task may be interpreted as 
that of finding the intersection of fuzzy graphs. 

Figure 2.17 illustrates the definition of the intersection of fuzzy graphs 
F n G , assuming that F and G are fuzzy graphs of the form 

where Aj x Bj and Ck x Dk are Cartesian products of fuzzy sets Aj , B j , Ck, 
D k , respectively, and the summations denote disjunction. The intersection 
of the fuzzy graphs F and G is expressed as 

F n G = L (Aj n Ck) x (Bj n Dk) 
j,k 

Of course, the intersection F n G is a fuzzy graph, given as a disjunctive 
representation of the fuzzy points that are Cartesian products of fuzzy sets 
(Aj n Ck) and (Bj n Dk). 

It was mentioned in Section 2.2.4 that the inference process based on the 
compositional rule of inference may be illustrated by means of the concept 
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FIGURE 2.17. Intersection of fuzzy graphs 

of a fuzzy graph. Figure 2.10 shows the process of inference for only one 
individual rule (fuzzy relation). This rule can be treated as a fuzzy point 
on the fuzzy graph that represents a collection of rules (in the form of 
fuzzy points). The inference process based on the collection of rules can 
be portrayed as the intersection of this fuzzy graph and the cylindrical 
extension of the fuzzy set A, defined on X, to X x Y. Then, the projection 
(see Definition 27) of the graph intersection on Y gives the inferred output 
fuzzy set in Y . This is illustrated in Fig. 2.18. 

It is interesting to observe the result for the above mentioned interpola
tion problem, presented in [574]. The case of the conditional constraint in
terpretation of the fuzzy IF-THEN rules is considered, with the assumption 
that the fuzzy set A is a singleton (see Definition 3). Using the definition 
of the intersection of fuzzy graphs, the same result has been obtained as 
that presented in the seminal paper by Mamdani and Assilian [310]; see 
also Sections 2.3.2 and 2.3.3. 

Other problems of the calculus of fuzzy graphs, for example "what is the 
integral of a fuzzy graph?" or "what are the roots of a fuzzy graph?" fall, 
according to [576], within the realm of computing with words. 

2.2.6 Computing with Words 

The calculus of fuzzy graphs is a cornerstone of computing with words 
(CW), which involves manipulation of words rather than numbers. As a 
methodology, introduced by Zadeh [574], [575], [577], CW is a derivative 
of fuzzy logic. It is a methodology for computing and reasoning which is 
close to human intuition, and can thus be applied in Artificial Intelligence. 
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FIGURE 2.18. Illustration of the inference process as intersection of fuzzy graphs 

The so-called computational theory of perceptions (CTP) was developed by 
Zadeh [578], [579], based on the methodology of CW; see Section 7.4, in 
Chapter 7. 

As mentioned in Section 2.2.5, one concept which plays a pivotal role in 
CW is that of a granule. A fuzzy granule is a fuzzy set of points drawn 
together by similarity. A word may be atomic, e.g. young, or composite -
for example not very young - treated as a label of a fuzzy granule. 

In CW, a granule g, which is the denotation of a word, W, is viewed 
as a fuzzy constraint on a variable. A key role in CW is played by fuzzy 
constraint propagation from premises to conclusions. A basic assumption in 
CW is that information is conveyed by constraining the values of variables. 
Moreover, information is assumed to consist of a collection of propositions 
expressed in a natural or synthetic language. Such propositions, typically, 
play the role of linguistic characterization of perceptions (see Section 7.4). 

Let I denote information and PI, . .. ,Pn be propositions, so the informa
tion can be represented as a collection of propositions, thus 

with each proposition in the collection denoting a constraint on a variable. 
In CW, the constraints can take a variety of forms. 

Examples of these propositions may be "Jim is tall" , "Thomas is 15", 
with the constrained variables Jim's height and Thomas' age, respectively. 
The constraints can be expressed as 

Height (Jim) is tall 

Age (Thomas) = 15 
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Both of these propositions may be viewed as linguistic characterizations 
of perception. The linguistic value "tall" is the label of a granule "tall" (for 
simplicity the same symbol is used for a word and its denotation). The fuzzy 
set "tall" plays the role of a fuzzy constraint on the height of Jim. This is 
an example of a disjunctive (possibilistic) constraint; see Section 7.4. The 
latter is an equality constraint. However, 15 can be treated as the label of a 
granule "15" which may represent a fuzzy number (about 15). This is thus 
a fuzzy constraint on the age of Thomas, that might also be viewed as a 
possibilistic constraint, so the equality symbol can be replaced by " is" . 

Other examples of such propositions, like "Most students are young" , 
" Carol lives near Mary", are considered in [574], [577]. 

The following basic generic problem is posed in CWo From the initial data 
set, which is a collection of propositions expressed in a natural language, 
we wish to infer the answer to a query, both of these formulated in a 
natural language. A few tasks of CW, with reference to this basic problem, 
have been proposed in [577]. One of them refers to a function described in 
words by fuzzy IF-THEN rules, similar to that expressed by formula (2.84). 
These rules may be viewed as a linguistic representation of a perception of 
this function. What this implies is that the function is approximated by a 
fuzzy graph (see Section 2.2.5, Fig. 2.16). In this example, the initial data 
set consists of the collection of rules. The query is: What is the maximum 
value of the function described by these rules? This problem was mentioned 
in Section 2.2.5; the solution is presented in [576]. Another task, formulated 
in [577], with regard to CW, also refers to fuzzy IF-THEN rules in a similar 
form, and to fuzzy graphs. 

Concerning the examples, mentioned above, in linguistic characteriza
tions of variables and their dependencies, words - which may be viewed as 
a form of fuzzy granulation - serve as values of variables and play the role 
of fuzzy constraints. 

In CW, there are two core issues. First is the question: How can the 
fuzzy constraints which are implicit in propositions expressed in a natural 
language be made explicit? This is the issue of representation of fuzzy con
straints. Second is the question of how fuzzy constraints can be propagated 
from premises to conclusions. These issues are addressed in [577]; see also 
Section 7.4. 

2.3 Fuzzy Systems 

The concepts of fuzzy sets and fuzzy logic have been used in fuzzy systems 
[561], [563]. Most of them are rule-based fuzzy systems, in which relation
ships between variables are represented by fuzzy IF-THEN rules. These 
kind of systems have been successfully applied, mainly as fuzzy controllers. 
During the 1980s and 1990s, fuzzy theory was extensively employed in a 
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wide range of consumer products in Japan [184], [493). The most notable 
and spectacular examples of fuzzy system applications are an automatic 
train controller and a helicopter controller. Some introductory information 
about fuzzy control and fuzzy controllers can be found e.g. in [484]' [289). 
Some industrial applications of fuzzy control are presented in [485) . In the 
literature, there are many books and papers on theoretical as well as prac
tical aspects of fuzzy control; see e.g. [403], [288), [112], [24], [111], [383], 
[513], [96], [281]' [224], [554], [356), [357], [16], [378], [508], [393). However, 
rule-based fuzzy systems can also be employed to solve other problems, for 
instance, pattern classification tasks, e.g. [365], and function approxima
tion, e.g. [274) . This section deals with fundamentals of rule-based fuzzy 
logic systems. 

2.3.1 Rule-Based Fuzzy Logic Systems 

The name fuzzy logic systems refers to the systems which incorporate fuzzy 
logic. Figure 2.19 shows the general structure of a fuzzy logic system, which 
is a knowledge-based system. 

FIGURE 2.19. General structure of a fuzzy logic system 

crisp 
output 

The main part of the system depicted in Fig. 2.19 constitutes a so-called 
"pure" fuzzy system, composed of the inference engine and the fuzzy rule 
base. The inference engine performs an inference process by use of ap
proximate reasoning (see Section 2.2). The fuzzy rule base is the knowledge 
base, which consists of a collection of fuzzy IF-THEN rules. The "pure" 
fuzzy system realizes a mapping from input fuzzy sets to output fuzzy sets. 
A fuzzijier and a defuzzijier are used in order to obtain a system with crisp 
(non-fuzzy) inputs and crisp outputs. This is necessary in most engineering 
systems where the inputs and outputs are real-valued variables. 

Let us start from the most essential part of the fuzzy logic system, i.e. 
the" pure" fuzzy system. It realizes a mapping from the input fuzzy sets to 
the output fuzzy sets. This mapping is conducted by the inference engine, 
based on the collection of fuzzy IF-THEN rules. 
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The rule base consists of rules in the following form 

R(k) : IF Xl is A~ AND X2 is A~ AND ... AND Xn is A~ 

THEN y is Bk (2.94) 

for k = 1, ... , N, where X!, ..• , X n , and y are linguistic variables, corre
sponding to input and output, respectively. According to Definition 31, 
Xl, . .. , X n , and yare the symbolic names of linguistic variables, which can 
take their values from the term-sets of the linguistic values. In this case, 
A~ , ... , A~, and Bk are elements of the term-sets. The semantic function, 
M, in Definition 31, gives a meaning (interpretation) of a linguistic value, 
that is a fuzzy set (or its membership function) defined over the appro
priate universe of discourse. It was mentioned, in Section 2.2.3, that the 
linguistic terms and their meanings were usually interchangeable. 

Now let us explain the inference process. Two types of approximate 
reasoning are employed in fuzzy inference systems: FITA - first inference 
then aggregation, and FATI - first aggregation then inference [56], [101]. In 
the former method, firstly the inference is performed based on each indi
vidual rule, then the aggregation of the inferred fuzzy sets is applied. This 
method is often called individual-rule based inference [111]. In the latter 
one, also called composition based inference [111], at first the aggregation 
of the rules is employed. Then, the output fuzzy set is inferred as a compo
sition of the global (aggregated) rule and the input fuzzy set. Aggregation 
of the rules is usually realized by aggregation of the relation matrices which 
represent the rules (see e.g. [56], [442]). This corresponds to the aggregation 
of rules via union operation, for example. In the FITA inference, each rule 
in the fuzzy rule base determines an output fuzzy set, and after that the 
fuzzy sets are aggregated via union operation (or others). The FITA and 
FATI types of inference are also called local and global inference, respec
tively (see [222]). In both methods, the inference is conducted based on the 
compositional rule of inference (see Section 2.2.1). 

The following formula expresses the compositional rule of inference ap
plied to an individual rule 

(2.95) 

where A' is an input fuzzy set, Ak ---t Bk represents the rule R(k) in the 

form of Equation (2.94), and Bk is the output fuzzy set inferred on the 
basis of A' and A k ---t Bk. 

Formula (2.95) realizes the composition of fuzzy set A' and fuzzy relation 
Ak ---t Bk, according to Definition 29. Hence, from Equation (2.67), formula 
(2.95) takes the following form, known as the sup-star composition 

(2.96) 
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where /-LA', /-LAk-+Bk, and Jlrjjk are membership functions of fuzzy sets A', 
Ak -+ Bk, and Bk, respectively, x = [x!, ... , xn]T E Xl X .•. X Xn = X, 
and y E Y, assuming that X!, ... ,Xn and Y are universes of discourse of 

fuzzy sets A~, ... , A~, and Bk, respectively, the I operation can be any 
type of the T-norm (see Section 2.1.2). 

It should be noted that Ak -+ Bk, which corresponds to the IF-THEN 
rule (2.94), where Ak = A~ x ... x A~, is interpreted as a fuzzy rela
tion (see Section 2.1.3). It was mentioned in Section 2.1.3 that the Carte
sian product of fuzzy sets (see Definition 25) was a fuzzy relation. In Sec
tion 2.2.2, various implication functions are presented. When their argu
ments are membership functions, they are referred as fuzzy implications 
(see Section 2.3.4). The fuzzy implications are also fuzzy relations. Both 
kinds of fuzzy relations can be used in fuzzy systems. The former is applied 
in the so-called Mamdani approach, and the latter in the logical approach. 
These fuzzy systems are described in the next sections. 

The fuzzy logic system under consideration is the multi-input, single 
output (MISO) system. It can be easily extended a to multi-input, multi
output (MIMO) system. The inference method is the FITA. If the FATI 
inference is employed, the Ak -+ Bk in Equation (2.95) will be replaced by 

the global, i.e. aggregated rule, and instead of the fuzzy set Bk, the overall 
fuzzy set B' will be inferred. 

The fuzzifier and the defuzzifier are added to the "pure" fuzzy logic 
system in order to use this system in engineering applications, where the 
inputs and outputs are real-valued variables [513]. The fuzzifier maps crisp 
points in X to fuzzy sets in X, and the defuzzifier maps fuzzy sets in Y to 
crisp points in Y. 

Let x= [Xl, . .. , xn]T is a crisp point in X = Xl X ... X X n. The fuzzifier 
that is most often employed in fuzzy systems is the singleton fuzzifier, 
characterized by the following membership function 

{ 1 if X=X 
/-LA' (x) = 0 if x #x (2.97) 

The fuzzy set A' represented by Equation (2.97) is called a fuzzy singleton 
(see Definition 3). The fuzzifier characterized by the membership function 
that equals 1 for x =X and decreases from 1 as x moves away from x is 
called a non-singleton fuzzifier. An example of the non-singleton fuzzifier 
is a fuzzy set A' with the Gaussian membership function 

( ) (
X-X)T (X-X)) 

/-LA' x = exp 2 
(J 

(2.98) 

where (J is a parameter which corresponds to the width of the Gaussian 
function. 
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The fuzzy set represented by the membership function (2.98) is a fuzzy 
number, according to Definition 9, assuming that X = R; see Fig. 2.8. For 
X = R2, membership function (2.98) looks similar to that in Fig. 2.2. 

The non-singleton fuzzifier is very seldom applied in fuzzy systems. How
ever, it might be useful if the inputs are corr~ted by noise. 

Although the same symbol x = [Xl, ... , xnl denotes linguistic variables 
in the rule base (2.94) as well as the crisp (real-valued) input variables in 
Equations (2.97) and (2.98), these can be easily distinguished, if necessary. 
Similarly, the symbol T denotes transposition of the vector, as well as the 
T-norm operator (in Section 2.1.2 and others). 

The defuzzifier performs a mapping from the inferred fuzzy sets Bk or 
B' in Y to a crisp point 11 in Y. There are many defuzzification methods 
[111], [178]. The best known is the center-oJ-area (COA), also called the 
center-oJ-gravity (COG) method. In the continuous case, it is defined by 

_ Jy Y {LB' (y) dy 
y= Jy {LB' (y) dy 

(2.99) 

In the discrete case, this method takes the following form 

(2.100) 

where Yj, for j = 1, ... , m, are discrete points in Y. 
This method, in the continuous case, determines the center of the area 

below the combined membership functions. 
If the fuzzy system B' is created as the union of all fuzzy sets Bk, for 

k = 1, ... , N, then Equations (2.99) and (2.100) can be presented as fol
lows, respectively 

(2.101) 

and 

(2.102) 

It should be noted that these forms of the COA defuzzification method 
avoid computation on B'. The maximum operation in formulas (2.101) 

and (2.102) corresponds to the union of fuzzy sets Bk, realized as the 
aggregation by use of the S-norm (see Section 2.1.2). 

Another defuzzification method, is center-oJ-sums (COS) defuzzification. 
This method is similar to the COA but faster. Instead of the maximum 
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-k 
operation in Equations (2.101) and (2.102) it employs the sum of B , for 
k = 1, ... ,N. This method can thus be represented by the following for
mulas, in the continuous and discrete case, respectively 

(2.103) 

and 

(2.104) 

where Yj, for j = 1, ... ,m, are discrete points in Y. 
In this method the overlapping areas of the combined membership func

tions are taken into consideration. Moreover, this method is faster than the 
COA, so it has been used quite often. 

It should be noted that there are some fuzzy systems which claim to have 
employed the center-oj-gravity defuzzification, but which actually applied 
the center-oj-sums method [111]. 

A simple and very quick method is height defuzzification. The computa-
tion of the algorithm concerns the fuzzy sets Bk, inferred by the individual 
rules. Neither the support nor shape of the membership function /L[jk plays 
the role in this method. Only centers of the membership functions, i.e. 
the points with the largest membership values are important. This method 
takes the peak value of each membership function /L[jk, for k = 1,. .. ,N, 
and creates the weighted, with respect to the height (see Definition 5) of 

-k 
the fuzzy sets B , sum of these peak values. Formally, this method can be 
described by the following equation 

(2.105) 

where 'fl is the peak point of the membership function /L[jk. 

The defuzzification method expressed by formula (2.105) is also known 
as the center average (CA) defuzzification. This method can be determined 
from the discrete version of the COA defuzzification method. In this case, 
the peak values fl, for k = 1, ... ,N, are the same as the centers of the 
membership functions /LBk, defined as the points in Y such that 

(2.106) 

since the fuzzy sets Bk, inferred in a fuzzy logic system, are usually clipped 
or scaled forms of the fuzzy sets Bk. 
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As a special case of the discrete version of COA defuzzification (2.100), 
the following method can be used 

",N -k (-k) _ L.Jk=l Y J.£B' Y 
y= N 

Ek=l J.£B' (1l) 
(2.107) 

where 1/, for k = 1, . .. , N, which are discrete points in Y, satisfy condi
tion (2.106). 

Some other defuzzification methods are presented in [111]. 
Apart from fuzzy logic systems with a fuzzifier and a defuzzifier, the 

Takagi-Sugeno type of fuzzy systems [494] have also been successfully em
ployed in many practical applications. These systems use a rule base with 
the same antecedents (IF parts) of the rules as depicted in formula (2.94), 
but with different consequents (THEN parts) of the IF-THEN rules. The 
consequent (conclusion) parts of the rules, in the Takagi-Sugeno systems, 
do not contain fuzzy sets. They have a functional form that is a linear 
combination of input variables. Therefore these systems do not need de
fuzzifiers. 

2.3.2 The Mamdani and Logical Approaches to Fuzzy 
Inference 

The Mamdani approach refers to the work of Mamdani and Assilian [310]. 
They interpreted the fuzzy IF-THEN rules as implications, defined as the 
Cartesian product. As a matter of fact, what they called implications were 
not actually implications in a logical sense (see Section 2.2.2). In this case, 
the fuzzy rules are viewed in terms of a function defined by a number of 
different samples. 

Although the fuzzy systems based on IF-THEN rules, according to the 
Mamdani approach, are also called fuzzy logic systems, they refer to fuzzy 
logic in a broad sense, i.e. understood as using fuzzy sets. In this sense, 
which is that most generally employed nowadays, fuzzy logic is almost 
synonymous with the theory of fuzzy sets. 

Fuzzy logic systems employing implications in a logical sense, as the 
interpretation of IF-THEN rules, refer to fuzzy logic in a narrow sense, i.e. 
the extension of classical logic. These systems are considered with reference 
to the logical approach to fuzzy inference. 

Let us consider the fuzzy logic system described in Section 2.3.1, with 
the rule base expressed by formula (2.94), which can also be presented in 
the following form 

R(k) : IF x is Ak THEN Y is Bk (2.108) 

where x = [Xl. ... , xnf € X c Rn, and y € Y c R, are linguistic variables 
corresponding to the input and output of the system, Ak = A~ x ... x A~ 
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and Bk are fuzzy sets characterized by the membership functions J.LAk (x) 
and J.LBk (y), respectively, for k = 1, ... ,N. 

If Xl, ... ,Xn are independent variables, then the rule base (2.108) takes 
the form (2.94). Fuzzy IF-THEN rules (2.108) or (2.94) are interpreted as 
fuzzy relations (see Definition 24) and the inference process is performed as 
the approximate reasoning, according to the compositional rule of inference 
(see Section 2.3.1). The output fuzzy sets Bk are inferred by individual rules 
R(k), for k = 1, ... ,N, according to formula (2.95), so these fuzzy sets are 
characterized by the membership functions expressed by Equation (2.96). 

Using the Mamdani approach, the fuzzy relation Ak -t Bk which corre
sponds to the rule R(k) is represented by the T-norm (see Table 2.1), usually 
minimum or product (i.e. the Zadeh or algebraic T-norms, respectively). 
Moreover, the aggregation is realized by the S-norm, usually maximum 
operation (see Table 2.1). This means that the overall output fuzzy set B' 
is obtained by the union operation 

, N-k 
B = UB 

k=l 
(2.109) 

for k = 1, ... ,N, and the membership function of B' is expressed by 

N 
J.LB' (y) = k~/'Bk (y) (2.110) 

where S is the S-norm operator, generalized for more than two arguments 
(see Section 2.1.2), usually chosen as the maximum. 

Presented above refers to the FITA type of fuzzy inference. Similarly, 
when the FATI type of inference is employed, the rule aggregation is realized 
by the union operation, so the global rule is given by the following formula 

~ = ~ R(k) 
k=l 

(2.111) 

and the output fuzzy set B' is obtained, according to the compositional 
rule of inference, as follows 

B' =A' o~ (2.112) 

According to Definition 29, the membership function of B', in this case, 
is expressed by the sup-star composition 

J.LB' (y) = sup [J.LA' (x) ~ max {JLAk-.Bk (x,yn] 
xEX l';;k~N 

(2.113) 

assuming that the maximum operator has been chosen as the S-norm, in 
order to perform the aggregation. 

It is easy to show [289] that when the Mamdani approach is applied, 
the FITA and FATI types of the inference give the same result (the same 
output fuzzy set B'). 
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Using the logical approach, the fuzzy relations Ak -+ Bk, which corre
spond to the rules R(k) , for k = 1, ... ,N, are implications in a logical 
sense. In this case, the aggregation is realized by the intersection opera
tion instead of the union, so the overall output fuzzy set B' is obtained 
according to the expression 

B' = [Y; Bk (2.114) 
k=l 

for k = 1, ... ,N, and the membership function of B' is computed by use 
of the T-norm instead of the S-norm, that is 

N 

/-LB' (Y) = k!/'Bk (Y) (2.115) 

where T is the T-norm operator, generalized for more than two arguments 
(see Section 2.1.2), usually chosen as minimum or product operators. 

This type of inference, presented above, refers to the FITA method. 
The rule aggregation, when the FATI type of the inference is employed, 
is realized by the intersection operation instead of the union, so the global 
rule is given by the following formula 

N 
~ = n R(k) (2.116) 

k=l 

and the output fuzzy set B' is obtained according to the compositional rule 
of inference (2.112). 

It is important to emphasize that when the FATI type of the inference 
is applied, formula (2.113) is different. The maximum operator should be 
replaced by the minimum or product. 

Using the logical approach, the FITA and FATI types of inference lead to 
different results (see e.g. [222]). In the case of fuzzy inputs (non-singletons), 
the results obtained by local inference (FITA) are less restrictive and less 
informative than the results inferred by the global (FATI) method [113], 
[222]. However, in the case of numerical inputs (singletons) the local infer
ence does not cause worse results than the global inference. 

The S-norm and T-norm operators, used in the Mamdani and logical 
approach, refer to the disjunction and conjunction, respectively, concerning 
the combinations of the constraints in Equations (2.92) and (2.93). 

The Mamdani and logical approaches to fuzzy inference have been dis
cussed in [113], [547], [222], [16], [101]. In [547], as well as in [127], the 
Mamdani and logical approach are also called the constructive and de
structive approaches, respectively. 

2.3.3 Fuzzy Systems Based on the Mamdani Approach 
The fuzzy controller introduced by Assilian [13] and Mamdani [309], also 
described in [310], used the minimum operator as the T-norm which repre
sented the fuzzy relations corresponding to the IF-THEN rules, the same 
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operator for conjunction in the premises (antecedents) of the rules, and 
the maximum operator for the aggregation. FUzzy rules employed in this 
controller had the following general form 

R(k) : IF Xl is A~ AND X2 is A~ AND ... AND Xn is A~ THEN 

Yl is Bf AND Y2 is B~ AND ... AND Ym is B::" (2.117) 

for k = 1, ... , N, with the linguistic variables XI, •• • , X n , and Yl, ... ,Ym, 
associated with the fuzzy sets At, . .. , A~, and Bf, ... , B:;', in the universes 
of discourse XI, ... , Xn C R, and YI, ... , Ym C R, respectively. 

Formula (2.117) is an extension of the rule form (2.94) for the MIMO 
system. We can assume that the fuzzy sets are characterized by the mem
bership functions /-tAk(Xl),···,/-tAk(Xn) and /-tBk(yt}, ... ,/-tBk (Ym), 

1 n 1 m. 

respectively, for k = 1, ... , N; moreover x = [Xl, ... , xnf f. Xc Rn, 
and Y=[Yl, ... ,Ymff. YCRm, where X= Xl X .•. X X n , and 
Y = Yl X ... X Ym . 

The rule base (2.117) can be presented in the form of Equation (2.108), 
where Ak = At x ... x A~ and Bk = Bf x ... x B:;' are fuzzy sets 
characterized by the membership functions /-tAk (x) and /-tBk (y), respec
tively. However, it is sufficient to consider the MISO system, with rule 
base (2.94). The results obtained for this kind of fuzzy system can easily 
be extended to the MIMO system. Therefore, the fuzzy logic system with 
rule base (2.94) and its shorter version (2.108), for a single output, will be 
under consideration. 

The fuzzy controller introduced by Assilian [13] and Mamdani [309] used 
the so-called max-min method of fuzzy inference. The minimum operation 
refers to the T-norm which represents the fuzzy relation corresponding to 
the IF-THEN rule. The maximum operation refers to the S-norm applied as 
the aggregation operator. The minimum operation has also been employed 
in order to realize the Cartesian product of the fuzzy sets in the antecedent 
part of the rule, i.e. to perform the conjunction in the premise of the rule. 

The max-min inference is conducted as follows, according to the FITA 
method. The overall fuzzy set B' is obtained by formulas (2.109) and 
(2.110), where the S-norm is chosen as the max operator, i.e. as the aggre-

gation of the fuzzy sets Bk, for k = 1, ... , N, by the max operation 

/-tB' (y) = max {lLBk (y)} 
1";; k";; N 

(2.118) 

The fuzzy set Bk, inferred by the fuzzy relation Ak ---t Bk, which corre
sponds to the IF-THEN rule R(k), is a composition of the input fuzzy set 
A' and the relation, i.e. A' 0 (Ak ---t B k). According to Definition 29, the 

membership function of the fuzzy set Bk is given by Equation (2.96). If 
the min operator is chosen as the T-norm in this equation, it will take the 
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following form 

Jlrjj" (y) = sup [ILA' (x) 1\ ILA"-+Bk (x, y)] 
xEX 

(2.119) 

The min operator also realizes the fuzzy relation Ak ~ Bk, so the mem
bership function of the relation is given by 

(2.120) 

Fuzzy sets A k, as well as A' are defined in the universe of discourse 
X =Xl x ... X XnC R n, as the Cartesian products A1 x ... x A~ and 
A~ x ... x A~, respectively, so from formulas (2.119) and (2.120) we have 

Jlrjjk (y) = sup [min {ILA~ (Xl) , ... ,ILA'., (Xn) , 
Xi 

(2.121) 

If the input fuzzy set A' is the singleton (the singleton fuzzifier), defined 
by Equation (2.97), then formula (2.119) will be simplified to 

1L73" (Y) = ILAk-+Bk (x, y) 

and Equation (2.121) will be expressed as follows 

(2.122) 

(2.123) 

h - [- - ]T . . . t' X X X R n were X= Xl, ... ,Xn IS a CrISp pOln In = 1 X ... X n C . 
Thus, from formulas (2.118) and (2.123), we obtain the max-min in

ference method in the form 

(2.124) 

Another method of inference, commonly applied in fuzzy control systems, 
is the max-product inference method, also called the max-dot method. in
stead of the min operator, the product operator is used in this method in 
order to represent the fuzzy relation A k ~ Bk. Although the fuzzy relation 
realized by the product operator is not an implication in a logical sense, it 
is known in the literature as Larsen's implication [288]. Similarly, the fuzzy 
relation as the min operator, employed in the previous method, is known 
as Mamdani's implication. 

In the max-product inference method either the min or the product 
operator is applied as the T-norm in Equation (2.96), as well as the Carte
sian product to represent the conjunction in the rule premises (antecedents). 
However, it is usually assumed that the same operators are used for the 
sup-star composition, the Cartesian product, and the fuzzy relation. In 
this case, the min operator in formulas (2.119) , (2.120), (2.121) must be 
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replaced by the product operator. If the input fuzzy set A' is the single
ton, the max-product inference method will be expressed, analogously to 
Equation (2.124), as follows 

(2.125) 

It is easy to determine similar formulas with reference to other combina
tions applied in both methods of inference. 

Figures 2.21 and 2.22 illustrate the max-min and the max-product in
ference methods, assuming that only max and min operators are employed 
in the former method, and only max and product operators are used in the 
latter one. It should be noted that the membership functions of the fuzzy 
sets Bk, inferred by the particular rules (fuzzy relations Ak ---t Bk), for 
k = 1, . .. ,N, in the max-min inference method, are" clipped" versions of 
the membership functions of the conclusion fuzzy sets Bk. The member
ship functions of these fuzzy sets, inferred by the max-product method, are 
"scaled" forms of the membership functions of the conclusion fuzzy sets. 
This effect is shown in Figs. 2.21 and 2.22, respectively. 

During the inference process, first of all the matching of input data and 
the rule premises is carried out. This step is illustrated, for crisp input data 
(singleton fuzzifier), in Fig. 2.20. It is assumed that there are two inputs 
which correspond to two linguistic variables in the antecedent parts of the 
rules; thus n = 2. 

Two antecedent fuzzy sets At and A~ with Gaussian membership func
tions are shown in Fig. 2.20 (a). Crisp values Xl and X2 ofthe input vector x 
are marked and values of the membership functions in this points, JLAk (Xl) 

1 

and JLAk (X2), are indicated. 
2 

The conjunction in the rule antecedents, in the max-min and max-product 
inference methods, is represented by the Cartesian product of the fuzzy 
sets in the rule premises. In Fig. 2.20 (b) and (c) the Cartesian product 
At x A~ of the fuzzy sets At and A~, realized by the min and product 
operators, respectively, are portrayed. The crisp point x and the corre
sponding values of the membership function of the Cartesian product in 
this point, JLA~xA~ (x), denoted Tk, where x= [Xl,X2f, are marked in the 
figures. 

The value, Tk, of the Cartesian product presented in Fig. 2.20 (b) is equal 
to JLAk (Xl) /\ JLAk (X2), while the value Tk = JLAkxAk (x), for the Carte-

l 2 1 2 

sian product depicted in Fig. 2.20 (c), is equal to JLAk(Xl) JLAk(X2). The 
1 2 

matching of the crisp input x with the antecedents of each rule R(k), for 
k = 1, ... ,N, is performed in this way. Different matching results are ob
tained as values of the membership function ILAkXAk (x) for each rule. 

1 2 
In the same way, the matching is conducted for more than two linguistic 

variables in the rule premises, but the Cartesian product of the fuzzy sets 
can not be graphically illustrated for n > 2. However, Fig. 2.20 (a) can be 
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easily extended for the case of n > 2, and the Cartesian product of the 
fuzzy sets Af, for i = 1, ... ,n, can be easily computed. 

a) 

b) 

c) 

,u{x) 

,u{x) 

,u(xz) 

,u,j;(:~J 

FIGURE 2.20. lllustration of the first step of inference: matching of the crisp 
input data and the antecedent part of the rule 

The value of the membership function of the Cartesian product in the 
point X, determined as shown in Fig. 2.20, and denoted 'Tk, is used in or
der to perform the inference, according to the max-min or max-product 
method. Figure 2.21 portrays the inference conducted on the basis of Equa
tion (2.123) for the max-min method. Figure 2.22 shows the inference 
for the max-product method, based on a similar formula, where the min 
operator is replaced by the product operator. 

The inference is illustrated in Figs. 2.21 and 2.22 for one particular rule 
R(k) , in the form (2.94). This kind of inference is part of the FITA method. 
The inference, for individual rules, is performed according to the compo-
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sitional rule of inference, applying the composition of the input fuzzy set 
(the singleton) and the fuzzy relation which represents the rule. 

In general, when the input fuzzy set A' is a non-singleton, the composi
tion of the input fuzzy set and the fuzzy relation is illustrated in Fig. 2.10. 
In this case, symbols A and B in this figure should be replaced by A' 
and Bk, respectively, and R denotes the fuzzy relation that corresponds to 
the rule R(k). It is easy to notice that if A' is a fuzzy singleton, defined 
by Equation (2.97), then this kind of inference will give the result pre
sented in Fig. 2.21. The result shown in Fig. 2.22 is obtained analogously. 
The former refers to the max-min method, while the latter refers to the 
max-product method, assuming that the same operators are used for the 
Cartesian product, the sup-star composition, and the fuzzy relation. 

p(y) 

-k 
Y 

,u(y) 

y -k 
Y y 

FIGURE 2.21. illustration of one rule inference based on min operation 

,u(y) ,u{y) 

y y 

FIGURE 2.22. illustration of one rule inference based on product operation 

Figure 2.23 illustrates the FITA max-min inference method for each 
rule in the rule base; assuming that N = 3. The inference for the first 
rule in this figure is exactly the same as that presented in Fig. 2.21; the 
others are similar. For three rules, in this example, three different fuzzy 
sets Bk are inferred. Their membership functions are "clipped" versions of 
the membership functions of fuzzy sets Bk, respectively. The overall output 
fuzzy set B' is obtained by aggregation of the fuzzy sets Bk, using the max 
operator, according to Equation (2.118). 
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p(y) p(y) 

HI 

Y Y 

pCy) pCy) p(y) 

HZ 

Y Y Y 

p(y) pCy) 
s' 

y y 

FIGURE 2.23. Illustration of max-min inference 

An illustration analogous to that depicted in Fig. 2.23 can be presented 
for the FITA max-product inference method. However, in this case the 

inferred fuzzy sets Bk have membership functions which are "scaled" forms 
of the membership functions of the consequent fuzzy sets Bk. This is shown 
in Fig. 2.22. Thus, the overall output fuzzy set B', obtained by aggregation 

of the fuzzy sets Bk, using the max operator, according to Equation (2.118), 
differs from the fuzzy set B' depicted in Fig. 2.23. 

Usually the max operator is employed for the aggregation, but it is pos
sible to apply other S-norms as the aggregation operators (see Table 2.1, 
Section 2.1.2). Figure 2.24 shows the output fuzzy set B', inferred by the 
method illustrated in Fig. 2.23, when three basic S-norms, listed in Ta
ble 2.1, are used. Figure 2.24 (a) repeats the same results which are ob
tained in Fig. 2.23. Figures 2.24 (b) and (c) present the analogical results 
for the algebraic and bounded S-norm, respectively. Figures 2.24 (d), (e), 

-k 
and (f) portray the output fuzzy set B', obtained when the fuzzy sets B 
are inferred using the FITA max-product inference method instead of the 
max-min method, and the aggregation by max, as well as the algebraic and 
bounded S-norm, respectively. 

As can be seen, in Figs. 2.23 and 2.24, in the Mamdani approach, the 
overall output fuzzy set B' is constructed as a superposition of the output 
fuzzy sets Bk, inferred by the individual rules R(k), for k = 1, . . . ,N. 
Therefore, the Mamdani approach is also called the constructive approach 
[547], [127]. 
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p(y) 

a) 

y y 

p(v) p(y) 

b) e) 

y y 

p(y) 

c) 

y y 

FIGURE 2.24. Output fuzzy sets obtained by inference based on min and prod
uct operations, respectively, and aggregation by different S-norms: a), d) max, 
b), e) algebraic, c), f) bounded. 

It was mentioned in Section 2.3.2 that using the Mamdani approach both 
the FITA and FATI types of inference give the same result (the same output 
fuzzy set B'). It is worth adding that the equivalence of both methods was 
very important from a computational point of view. The FATI method 
requires more time and computer memory to perform the operation of 
composition and store the global rule than the FITA method which is an 
individual rule based inference [111]. 

The defuzzification methods applied in order to obtain crisp output 
from the inferred fuzzy sets are described in Section 2.3.1. As can be seen 
(Fig. 2.23), the center average defuzzification, defined by Equation (2.105), 
gives the same result as the special case of the center-oj-area defuzzifica
tion, given by formula (2.107). 

The following lemmas have been formulated in [513]. 

Lemma 1 Fuzzy logic systems with the center average defuzz~fier (2.105), 
min operation as fuzzy relation (2.120), min operation as Cartesian products 
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A~ x ... x A~ , and singleton fuzzifier {2.97} are expressed as follows 

_ 'E~=1 'fl min{JLA~ (Xl)' ... ,JLA~ (Xn )} 
y = (2.126) 

'E~=1 min{JLA~ (Xl)' ... ,JLA~ (xn )} 

where 'fl satisfies condition {2.106} and we assume that fuzzy sets Bk, for 
k = 1, ... ,N, are normal fuzzy sets {see Definition 6}. 

Lemma 2 Fuzzy logic systems with the center average defuzzifier {2.105}, 
product operation as fuzzy relation Ak _ Bk, product operation as Carte
sian products A~ x ... x A~, and singleton fuzzifier {2.97} are expressed as 
follows 

""N -k fIn (- ) _ L...-k=l Y i=l JL A7 Xi 
y= N 

'Ek=l fI~=l JLA~ (Xi) 
(2.127) 

where rl satisfies condition {2.106} and we assume that fuzzy sets Bk, for 
k = 1, ... ,N, are normal fuzzy sets {see Definition 6}. 

Both lemmas can easily be proved, using Equations (2.105), (2.122). 
Then, formula (2.120) and the min operation as Cartesian products 
A~ x ... x A~ must be applied in the case of Lemma 1. Analogously, the 
product operation as fuzzy relation Ak _ Bk, and product operation as 
Cartesian products A~ x ... x A~ must be employed in the case of Lemma 2. 
The first lemma refers to the max-min inference method, while the second 
one corresponds to the max-product inference. 

The inference processes are portrayed in Figs. 2.20 - 2.24, using Gaussian 
membership functions. Similar illustrations, with triangular membership 
functions, are often presented in the literature on fuzzy systems. Fuzzy 
sets with triangular membership functions were employed in the first fuzzy 
systems, introduced by Assilian [13] and Mamdani [309], and used in many 
practical applications. Examples of both Gaussian and triangular member
ship functions are depicted in Fig. 2.1. 

Presented below is another lemma, formulated in [513], with Gaussian 
membership functions. 

Lemma 3 A fuzzy logic system with the center average defuzzifier {2.105}, 
the product operation as fuzzy relation A k _ Bk, product operation as 
Cartesian products A~ x ... x A~, singleton fuzzifier {2.97}, and Gaussian 
membership functions {2.58} with center and width parameters, respec
tively, af and xf, and additional scaling parameter cf is expressed as follows 

""N -k fIn k [(Xi-X~ )2] Y = L...-k=l Y i=l Ci exp - ~ 

N n k [(~)2] 'Ek=l fIi=l Ci exp - O"~ 
(2.128) 
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where fl satisfy condition (2.106) and we assume that fuzzy sets Bk, for 
k = 1, ... ,N, are normal fuzzy sets (see Definition 6). 

In order to prove this lemma, just substitute the proper equation defining 
the Gaussian membership function into formula (2.127). 

Assuming that cf = 1, the following mathematical description of the 
system given by Equation (2.128) is obtained 

"i;""'N -k 
_ .wk=l y Tk 
y= N 

Ek=l Tk 

(2.129) 

where 
n 

Tk = IIJLA~ (Xi) (2.130) 
i=l 

and 

X·-X· [ (_ _k)2] 
JLA~ (Xi) = exp - • lTf • (2.131) 

Equation (2.130) represents the antecedent matching degree (see Figs. 
2.20- 2.23), also called the degree of activation of rule R(k). Equation (2.131) 
expresses the value of the Gaussian membership functions with center and 
width parameters, respectively, lTf and xf, for the crisp input Xi, where 
i = 1, ... ,n, and k = 1, ... ,N. 

The fuzzy logic systems described by Equations (2.126) and (2.127) will 
be called Mamdani systems and Larsen systems, respectively. The former 
refer to Lemma 1 and use the min operation, applied in the fuzzy systems 
proposed by Mamdani [309], [310]. The latter refer to Lemma 2, and use the 
product operation, introduced to this kind of system, as a representation 
of the IF-THEN rules (max-product inference method), by Larsen [288]. In 
both systems the fuzzy sets in the antecedent and consequent parts of the 
rules can be of different types, including Gaussian and triangular. However, 
the Gaussian functions are very convenient, since they are expressed in the 
form of Equation (2.131). 

2.3.4 Fuzzy Systems Based on the Logical Approach 

It was mentioned in Section 2.3.2 that fuzzy systems based on the logi
cal approach use the implications in a logical sense to represent the fuzzy 
IF-THEN rules (2.108). The genuine implications are presented in Sec
tion 2.2.2; see Table 2.2. The fuzzy systems described in Section 2.3.3, with 
the Mamdani approach to fuzzy inference, employed the min or product 
operations. In the former case, the membership function of the fuzzy re
lation Ak ---+ Bk, which corresponds to the fuzzy IF-THEN rule R(k), for 
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k = 1, ... ,N, is given by Equation (2.120). In the latter case, it is ex
pressed as a product of the membership functions ILAk (x) and ILBk (Y), 
for the MISO system, where x = [Xl> ... ,xnf € X c R n , and y € Y c R. 
When the inference of the fuzzy systems is based on the logical approach, 
the membership function of the fuzzy relation A k -t Bk is given according 
to the definition of the implication. For instance, if the Kleene-Dienes im
plication is employed, this membership function will be depicted as follows 

(2.132) 

where ILAk (x) is the membership function of the fuzzy set 
Ak = A~ x ... x A~. Using Definition 25, this membership function can be 
calculated based on Equation (2.56) or (2.57); hence 

(2.133) 

Just as in the case of the Mamdani approach, the fuzzy set Bk inferred 
by the fuzzy relation A k -t Bk, which corresponds to the IF-THEN rule 
R(k) , is a composition of the input fuzzy set A' and the relation. Thus 
A' 0 (A k -t Bk), and the membership function of the fuzzy set Bk is given by 
the sup-star composition (2.96). If the min or product operator is chosen as 
the T-norm in this equation, and the input fuzzy set A' is a fuzzy singleton, 
as defined by formula (2.97), then the membership function of the fuzzy 

set Bk will be expressed by Equation (2.122). Hence, from formula (2.132), 
we obtain 

Jlrjjk (y) = max (1 - ILAk (x) ,ILBk (y)) (2.134) 

where x= [Xl, ... ,Xn)T, and ILAk (x) represents the antecedent matching 
degree which is calculated based on Equation (2.133); see Fig. 2.20. 

In the same way as in the Mamdani approach, the value of the member
ship function ILAk (x), denoted by Tk, is determined as shown in Fig. 2.20 
and used in order to perform the inference. Figure 2.25 portrays the inference 
for the individual rule R(k), according to Equation (2.134); k = 1, ... ,N. 

In the figure Tk = 1 - Tk. 

Figure 2.26 illustrates the FITA inference method for each rule in the 
rule base; assuming that N = 3. The inference for the first rule in this figure 
is exactly the same as presented in Fig. 2.25; others are similar. For three 
rules, in this example, three different fuzzy sets Bk are inferred. Unlike 
in the case of the Mamdani approach, where the aggregation of the fuzzy 
sets Bk is realized by the S-norm operator, in the logical approach the 
aggregation is performed by the T-norm operator (see Section 2.3.2). In 
Fig. 2.26 the min operator has been chosen as the T-norm. Let us compare 
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,u(y) ,u(y) 
]jk 

'k 
Tk JIB' (V)= fk V ,u 0' (y ) 

y -k y Y 

FIGURE 2.25. Illustration of one rule inference based on the Kleene-Dienes im
plication 

the overall output fuzzy set B', obtained by the aggregation of the fuzzy 
sets Bk in Figs.2.26 and 2.23, for the same consequent fuzzy sets Bk . 
Although the membership functions J.LB' (y) are different in both figures, 
we can see that both of them have the greater value in the center point of 
the membership function J.LBk (y) for k = 3. It is clear in Fig. 2.23 that this 
rule has a higher degree of activation (antecedent matching degree). The 
overall output fuzzy set B', inferred using the aggregation by algebraic 
and bounded T -norm, possesses the same feature. Different fuzzy sets B', 
obtained by min, algebraic, and bounded T -norm, respectively, are shown 
in Figs. 2.27 (a), (b) , and (c). 

y y 

.u{.1') ,,(.1') li ' ,11(.1') 

B' 

Y Y Y 
,lI(y) .u{y) 

y y 

FIGURE 2.26. Illustration of inference based on the Kleene-Dienes implication 
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As can be seen, in Fig. 2.26, the overall output fuzzy set B', in the logical 
approach to fuzzy inference, is not constructed as the superposition of the 

-k 
output fuzzy sets B ,for k = 1, ... ,N. In this case, the overall output fuzzy 
set B' is obtained by eliminating these solutions which are not accepted by 
the particular rules. Therefore, this approach is also called the destructive 
approach [547], [127]. 

If the Lukasiewicz implication (see Table 2.2) is used instead of the 
Kleene-Dienes one, the membership function of the fuzzy relation A k -+ Bk 
will be expressed as follows 

J-LAk-+Bk (x, y) = min (1, 1 - J-LAk (x) + J-LBk (y)) (2.135) 

Thus, the fuzzy set Bk, inferred by the fuzzy implication A k -+ 

assuming that the input fuzzy set A' is a fuzzy singleton, is given by 

Jkjjk (y) = min (1, 1- J-LAk (x) + J-LBk (y)) (2.136) 

where x= [Xl, ... ,xnf, and J-L Ak (x) represents the antecedent matching 
degree which is calculated based on Equation (2.133); see Fig. 2.20. 

In this case, the overall output fuzzy sets B', as inferred using the aggre
gation by the min, algebraic, and bounded T-norm, respectively, for the 
same consequent fuzzy sets Bk, k = 3, as shown in Fig. 2.26, are depicted 
in Figs. 2.27 (d), (e), and (f). 

Similarly, we can apply other implications, listed in Table 2.2, to rep
resent the fuzzy IF-THEN rule R(k), for k = 1,... ,N. If the Zadeh or 
Reichenbach implication is employed, the fuzzy set Bk, inferred by the 
fuzzy implication A k -+ Bk, assuming that the input fuzzy set A' is a 
fuzzy singleton, is given by the following formulas, respectively 

Jkjjk (y) = J-LAk-+Bk (x,y) = max(I- J-LAk (x) ,min (J-LAk (x) ,J-LBk (y))) 
(2.137) 

for the Zadeh fuzzy implication, and 

(2.138) 

for the Reichenbach fuzzy implication, where x= [Xl, ... ,xnf, and J-L Ak (x) 
represents the antecedent matching degree which is calculated based on 
Equation (2.133); see Fig. 2.20. 

The fuzzy implication in the following form 

J-LAk-+Bk (x, y) = min {I, 1 - J-LAk (x) + J-LAk (x) J-LBk (y)} (2.139) 

is called a stochastic (or probabilistic) implication [111], by analogy with 
the equality P (B IA) = 1 - P (A) P (B), known in probability theory. 
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,lI(y) ,lI(Y) 

B' 

a) d) 
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,lI(Y) ,1I(Y) 

b) e) 
Y 

c) 
B' 

y y 

FIGURE 2.27. Output fuzzy sets obtained by inference based on the 
Kleene-Dienes and Lukasiewicz implications and aggregation by different 
T-norms: a), d) min, b), e) algebraic, c), f) bounded 

Using the stochastic implication, and the singleton input fuzzy set, the 
fuzzy set Bk, inferred by this implication, is expressed as follows 

f.LB k (y) = min {l, 1 - f.LAk (x) + f.LAk (x) f.LBk (y)} (2.140) 

where x= [Xl, .. ' ,xnf , and f.LAk (x) represents the antecedent matching 
degree which is calculated based on Equation (2.133); see Fig. 2.20. 

The overall output fuzzy sets B', obtained by the inference based on the 
Zadeh and stochastic implication, respectively, and the aggregation by the 
min, algebraic, and bounded T -norm, respectively, for the same consequent 
fuzzy sets Bk, k = 3, as shown in Fig. 2.26, are depicted in Fig. 2.28. 

Similarly, we can obtain the membership functions of the overall output 
fuzzy set B', employing inference based on other implications, for example 
Goguen, Godel, etc. The shapes of these functions may be different from 
these presented in Figs. 2.27 and 2.28. However, the crisp output values, 
calculated by use of the defuzzification methods, are more important than 
the shapes of the output fuzzy sets. In the case of the fuzzy systems de
scribed in this section the center-oj-area (COA) method (see Section 2.3.1) 
is recommended for application to obtain the crisp value from the fuzzy 
set B'. 
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B' 
b) c) 

y ,1' 

p(y) II(Y) 

c) B' f) 
y 

FIGURE 2.28. Output fuzzy sets obtained by inference based on the Zadeh and 
stochastic implications and aggregation by different T-norms: a), d) min, b), e) 
algebraic, c), f) bounded 

Figures 2.27 and 2.28 illustrate the output fuzzy sets B', obtained by 
using different T-norms for the aggregation. However, the min operation 
is that most often applied. In the case of some fuzzy logic systems, this 
operation gives the same result, for example for systems based on the 
Kleene-Dienes and Zadeh implications; see Figs. 2.27 (a) and 2.28 (a). The 
same result is also inferred by systems based on the Fodor and Willmott 
fuzzy implications. These implications are defined by the following formu
las, respectively 

{ I if f-LAk (x) ~ f-LBk (y) 
f-LAk-+Bk (x, y) = (1 ( ) ( )) h . max - f-LAk x ,f-LBk Y ot erWlse 

and 

f-LAk-+Bk (x, y) = min (max (1 - f-LAk (x) ,f-LBk (y)), 
max (f-LAk (x), 1- f-LBk (y), 

min(l- f-LAk (x) ,f-LBk (y)) )) 

(2.141) 

(2.142) 

The fuzzy implication given by Equation (2.141) was introduced by Fodor 
[129]; see also [100] and [101]. The fuzzy implication defined by Equa
tion (2.142) was proposed by Willmott [533]. It is easy to check whether 
the implications satisfy the conditions P1-P5 in Definition 30; Section 2.2.2. 
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As a generalization of the classical implication, Yager [539] defined the 
following implication 

(2.143) 

In this case, if J-LAk (x) = 0, then J-LAk--+Bk (x, y) = 1. This implication 
does not satisfy condition P5 in Definition 30, that is, the exchange prin
ciple. However, this principle is not always considered a basic implication 
property; see e.g. [101]. Instead of this condition, the Yager implication 
fulfils other properties, for example J-LAk--+Bk (x, y) = 0 if J-LAk (x) = 1 and 
J-L Bk (y) = 0, called the booleanity. 

Many implications, not always satisfying the conditions, have been in
troduced to fuzzy system reasoning. For example, the implication 

if J-LAk (x) ~ J-LBk (y) 
otherwise 

(2.144) 

known as the Sharp, Resher, or Gaines implication [143]. This implication 
does not fulfil conditions P4 and P5 but it does satisfy other properties; 
see e.g. [101]. 

The Goguen implication [149], for instance, fulfils the conditions P1-P5 
in Definition 30 as well as the properties listed in [101]; in the same way as 
other genuine implications. The Goguen implication is defined as follows 

( ) { 
min(l,i-'Rk«Y») if J-LAk(X)=f.O 

J-LAk--+Bk x, Y = i-'Ak X 

1 otherwise 
(2.145) 

The Godel implication is also a genuine implication (see Table 2.2); it is 
expressed by 

k k (x ) = {I if J-LAk (x) ~ J-LBk (y) 
J-LA --+B ,y J-LBk (y) otherwise (2.146) 

The last implication listed in Table 2.2 is defined by the following equa
tion 

{ 
1- J-LAk (x) 

J-LAk--+Bk (x, y) = J-LB~ (y) 
if J-LBk (y) = 0 
if J-LAk (x) = 1 

otherwise 

It is also an implication, according to Definition 30. 

(2.147) 

The fuzzy implications depicted in this section, as well as others pre
sented in the literature, can be used to build implication-based fuzzy logic 
systems. For all of them the inference is conducted in the way illustrated 
in Fig. 2.26. Of course, different shaped membership functions can be ap
plied, but the most often used are Gaussian or triangular ones. However, it 
is worth noting that for the system based on implication (2.147) triangular 
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fuzzy sets are more suitable, because the Gaussian membership functions 
fLBk (y), for k = 1, ... ,N, never equal zero. Figure 2.29 portrays the in
ference process based on implication (2.147), with triangular membership 
functions, and aggregation performed by the min operation. 

y 

Ti ' p(y) 

B' 

y y y 

FIGURE 2.29. Illustration of inference based on the Dubois-Prade implication 

Mathematical descriptions of implication based fuzzy systems, using the 
logical approach to fuzzy inference, can be determined, similar to those 
obtained for the Mamdani approach systems. However, in this case it is 
not possible to apply the center average defuzzification method, like in 
Lemmas 1 and 2. The mathematical formulas that describe the logical 
approach systems, based on the COA defuzzification method, are presented 
in Section 5.1, in Chapter 5. 

Some theoretical aspects of employing various implication operators in 
fuzzy systems are considered in [113], [27]. However, it is not easy to select 
an appropriate implication, since the final output value of the system is 
not only determined by the implication operator but also by the aggrega
tion and defuzzification methods. Therefore, many different combinations 
should be examined in order to choose the most suitable implication for a 
specific application of the fuzzy system. 
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3 
Neural Networks and Neuro-Fuzzy 
Systems 

This chapter presents an overview of neural networks and neuro-fuzzy sys
tems. The latter are a fusion of neural networks and fuzzy techniques, 
introduced in [293], initially developed in [66], [408], [87], and then in [167], 
[166], [491], [273], [169], [157], [228], [503], [270], and others. Neuro-fuzzy 
systems have been applied in many consumer products [492], [493]. They 
incorporate some merits of both neural networks and fuzzy systems. In the 
neuro-fuzzy combinations we distinguish fuzzy neural networks (see Sec
tion 3.2), obtained by introducing fuzziness directly into neural networks 
[169], and fuzzy inference neural networks (see Section 3.3), which are rep
resentations of fuzzy systems in the form of connectionist networks [513], 
similar to neural networks. Of course, different types of neuro-fuzzy sys
tems can be found in the literature, e.g. [493], [300], [53], [162], [361], [243], 
[347], [582], [229], [223], [496], [244], [56], [141], [101]. 

3.1 Neural Networks 

Artificial neural networks (called neural networks, for short) were inspired 
by the modelling of networks of natural (biological) neurons in a human 
brain. One motivation behind neural network research concerns a variety of 
problems that have proved to be very difficult to solve using conventional 
computers. Neural networks are connectionist architectures, composed of 
simple processing elements. They have interesting features, such as fault 
tolerance and the ability to generalize. 
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3.1.1 Model of an Artificial Neuron 
An artificial neuron, also called a processing element (PE), or simply neu
ron, receives input values from other neurons or from an external input 
stimulus. These inputs are multiplied by corresponding connection weights 
and all these signals are added together. The output of the linear part of 
the neuron thus equals the weighted sum of the inputs. This output value 
is then transformed by a so-called activation function or transfer function, 
which is usually nonlinear. Figure 3.1 illustrates this model of an artificial 
neuron. 

z 

FIGURE 3.1. Model of an artificial neuron 

The neuron model presented in Fig. 3.1 realizes nonlinear mapping from 
Rn to [0,1], or [-1,1]. Formally, this mathematical model is expressed as 
follows 

(3.1) 

where Ul, . .. ,Un are inputs of the neuron, fJ denotes a bias, and Wl, . .. ,Wn 
are connection weights, and z is the output of the neuron. The bias can 
be treated as a fixed input value Uo = -1, that is multiplied by the weight 
Wo = fJ. Thus, Equation (3.1) takes the following form 

(3.2) 

or 

(3.3) 

where u=[UO,Ul, ... ,unf and w=[WO,Wl, ... ,wnf. This means that 
the neuron receives input vector u and produces scalar output z, according 
to formula (3.3). Various types of activation (transfer) function f can be 
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chosen, depending on the characteristics of the applications. Some com
monly used functions are 

• Step function 

f (v) = { ~ 

• Hard limiter (threshold) function 

if v ~ 0 
otherwise 

{ 1 if v~O 
f (v) = sgn (v) = -1 otherwise 

• Ramp functions 

or 

f(v) = { 

• Sigmoidal function 

1 
v 

-1 

if v>1 
if O:::;v:::;1 
if v < 0 

if v> 1 
if Ivl:::; 1 
if v <-1 

1 
f (v) = 1 + e-.Bv for {3 > 0 

• Hyperbolic tangent function 

f (v) = tgh (a2v) = _11_-_e-_"'_v 
+e-"'V for a>O 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

We can choose, for example, {3 = 1, and a = 1 in Equations (3.8) and 
(3.9), respectively. It should be noted that the sigmoidal function defined by 
Equation (3.8) takes the form of the step function given by Equation (3.4) 
if {3 -t 00. Similarly, the hyperbolic tangent function expressed by Equa
tion (3.9) takes the form of the threshold function defined by Equation (3.5) 
if a -t 00. 

The artificial neuron depicted in Fig. 3.1 is a model of a natural (bio
logical) neuron, i.e. a nerve cell in the human brain. Inputs coming into the 
natural neuron are stimulation levels. The weights of the artificial neuron 
represent biological synaptic strengths in the natural neuron. Each input 
is multiplied by its corresponding synaptic weight and the result is fed into 
the body of the natural neuron. The cell body of the natural neuron is 
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called a soma, and is a central part of the neuron. All natural neurons are 
constructed from the same basic parts: the cell body, dendrites, and an 
axon; see Fig. 3.2. The dendrites are located at the end of the cell body. 
There are a number of dendrites. They form so-called dendritic trees. The 
axon is the neuron's transmission line. Each nerve cell has precisely one 
axon. The joint between the end of the axon and another neuron or muscle 
is called a synapse. The synapses may be located either directly on the cell 
body or on the dendrite. The synapses allow a cell to influence the activity 
of other neurons. A neuron receives signals from the synapses and sends 
the output through the axon. The cell body generates nerve impulses, the 
axon transmits the generated neural activity to other neurons, or to mus
cle fibers , and the dendrites serve as receptors for signals from adjacent 
neurons, muscle or sensory organs, such as the eye, ear, or skin. Nerve sig
nal transmission in the brain is of two types: chemical signals across the 
synapses, and electrical signals within the neuron. A nervous system con
sists of many natural neurons. There are approximately 1.5 x 1010 neurons 
of various types in the human brain. Each neuron receives signals through 
as many as 104 synapses. More information about natural neurons, as well 
as their mathematical models, can be found e.g. in [9]. 

FIGURE 3.2. A natural neuron 

The historically first neuron model was proposed by McCulloch and Pitts 
[317] in 1943. The model of operation of this neuron is very simple. The 
neuron responds to the activity of its synapses. If no inhibitory synapses 
are active, the neuron adds up its synaptic inputs and checks to see if the 
sum meets or exceeds its threshold. If it does, the neuron becomes active. 
If it does not, the neuron is inactive. 

With reference to the activation (transfer) functions of the artificial neu
ral networks, it is worth noticing that the step function defined by Equa
tion (3.4) corresponds to the natural neuron performance: the nerve cell 
"fires" only if its activity (i.e. its membrane potential) exceeds a certain 
threshold [187] . Artificial neurons are not restricted to this condition. Thus, 
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the activation function does not have to be the step function. Very simi
lar to the natural model is the threshold function given by Equation (3.5). 
Since the output of the neuron should not decrease if the activity increases, 
the activation function must increase monotonely. The sigmoidal function 
and hyperbolic tangent function defined by Equations (3.8) and (3.9), re
spectively, are convenient to use in artificial neural networks, because they 
are differentiable functions. 

3.1.2 Multi-Layer Perceptron 
Natural neurons are the fundamental building blocks of nervous systems. 
Each neuron in the human brain has in the order of hundreds or thousands 
of connections to other neurons, making the total number around 1014 or 
1015 • Connections playa very important role in neural networks. 

The neuron model, introduced in 1943, started research on artificial neu
ral networks. In the literature, other neuron models have also been con
sidered. 

Artificial neural networks are called connectionist networks. They are 
constructed using connections between the basic processing elements, i.e. 
artificial neurons. Neural networks organized in the form of layers are called 
layered networks. Two kinds of the networks are distinguished: single-layer 
and multi-layer neural networks. 

Many different paradigms of artificial neural networks have been de
veloped and applied since the late 1950s. The first artificial neural networks 
were known as the Perceptron and Madaline. 

The perceptron was proposed by Rosenblatt [410] in 1958, or even earlier 
[409]. It was a device consisting of layers of neurons that received input sig
nals from a sensory surface (retina); see e.g. [9], [125]. The perceptron was 
constructed from the so-called threshold logic units. These kind of elements 
are neurons in the form presented in Fig. 3.1, where the activation func
tion, f, is the threshold function defined by Equation (3.5). 

The single-layer perceptron has the ability to learn and recognize sim
ple patterns [411]. The perceptron is trained by presenting a collection of 
patterns to its inputs, one at a time, and adjusting the weights until the de
sired output appears for each of them. The perceptron convergence theorem 
[411], [9], [584], [172], [302] says that the perceptron learning rule converges 
to a correct set of weights in a finite number of training steps. However, 
there is no statement in the proof of this theorem that indicates how many 
steps are required to train the network. 

In 1959 Widrow [529]' [530] introduced a device, called Adaline, which 
stands for Adaptive linear neuron or Adaptive linear element. It is a simple 
neural model, a basic building block of neural networks. The Madaline is 
a Multi-Adaline form of neural network. The Adaline has a linear output, 
i.e. without a threshold. Thus, the Adaline can be viewed as an artificial 
neuron model presented in Fig. 3.1, without the non-linear part, that is the 
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function f block. The learning method of the Adaline is called the Adaline 
learning rule or the Widrow-Hoff learning rule [531]. It is also referred to as 
the least mean square (LMS) rule, since it converges in the mean square to 
the solution that corresponds to the LMS output error if all input patterns 
are of the same length [532]. 

Both networks, the Perceptron as well as the Madaline, are learning neu
ral networks that use a type of learning rule called the delta rule [413]. This 
learning rule is a generalization of the perceptron training algorithm, in
troduced by Rosenblatt [411], to continuous inputs and outputs. For the 
simple (discrete) perceptron the outputs can take only 1 and -1 values. 
The delta rule is employed for single-layer feed-forward networks with con
tinuous activation functions. 

Rosenblatt and his co-workers assumed several layers of neurons, in the 
perceptron, with complex sets of interconnections between them. However, 
the perceptron with many feedback connections was too complicated for 
easy analysis. Almost all mathematical analysis of the perceptron have 
therefore referred to the simplified perceptron with only feed-forward con
nections. Different types of perceptrons are described in the literature. The 
original one had three layers of neurons: sensory units, associator units, 
and a response unit which formed an approximate model of the retina. 

A multi-layer perceptron is much more powerful than a single-layer one. 
It has been proved that multi-layer networks have capabilities beyond those 
of a single layer; see e.g. [517], [584]. For instance, the well-known XOR 
problem can not be solved by the single-layer perceptron, because the XOR 
function (Exclusive-OR) is not linearly separable. However, it is known that 
multi-layer networks are not limited to the problems of linear separability. 
Two-layer perceptrons can solve the XOR example. A two-layer network 
can be constructed by cascading two single-layer ones. 

The multi-layer perceptron is a feed-forward neural network obtained 
as a generalization of the single-layer perceptron, by connecting the single 
layers. Typically, the network consists of an input layer, one or more hid
den layers, and an output layer. The input signal propagates through the 
network in a forward direction. The first hidden layer is fed from the input 
layer. The resulting outputs of this layer are in turn applied to the next 
hidden layer, and so on for the rest of the network. The output signals are 
obtained from the output neurons which constitute the output layer. 

Figure 3.3 illustrates the neural network called a multi-layer perceptron 
(MLP). This network has two hidden layers, but it can easily be extended to 
MLP neural network with more hidden layers. The elements of the hidden 
layers and the output layer are neurons, presented in Fig. 3.1. They are also 
called nodes of the network. The number of neurons can be different in each 
layer. The network depicted in Fig. 3.3 has n inputs, and m outputs. In the 
hidden and output layers there are N l , N2, and m neurons, respectively. 
Four layers are marked in this figure but the input layer is indicated in 
a slightly different way (broken line). This network can be considered a 
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three-layer perceptron, since the input layer does not contain neurons and 
does not change the input signals. However, in the literature, e.g. [134]' [2], 
[348], a three-layer network can be found that has input and output layers, 
and only one hidden layer. In this book, as well as in many others, such a 
network is treated as a two-layer neural net, so the number of layers does 
not include the input layer. For simplicity, the crisp input and output in 
Fig. 3.3 are not marked by a dash (as used in Chapter 2), since here we do 
not need to distinguish between real variables and linguistic variables. 

Input 
layer 

First 
hidden 
layer 

Second 
hidden 
layer 

Output 
layer 

FIGURE 3.3. Architecture of a multi-layer perceptron 

Single-hidden-layer neural networks are universal approximators and clas
sifiers; see e.g. [165]. An MLP with one hidden layer can approximate any 
continuous function to any desired accuracy (subject to a sufficient num
ber of neurons in the hidden layer). This statement expresses the theorem 
formulated in [99], as well as in others, e.g. [198], [142]. This is proved 
in [99J based on the Kolmogorov theorem [267J. The latter says that any 
real-valued continuous function defined on an n-dimensional cube can be 
represented as a sum of functions that have their arguments as sums of 
single-variable continuous functions. Thus, for any continuous function, 
there exists an MLP which can approximate it to any desired degree of 
accuracy if the continuous increasing functions are, for example, sigmoidal 
functions; see [243], for details. In [198], the Stone-Weierstrass theorem [94] 
has been used to prove that MLPs are universal approximators, and a dif
ferent method was employed in [142J . The universal approximation theorem 
can be extended to classifier-type mappings [99]. Thus, a single-hidden-layer 
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network with sigmoidal activation functions and a single linear output neu
ron is a universal classifier. This result has been confirmed empirically in 
several examples [201], see also [165]. 

3.1.3 Back-Propagation Learning Method 
The best known and most often used method of learning, applied to feed
forward multi-layer neural networks, is the back-propagation algorithm, 
also called backward error propagation or backprop (for short). It is an 
iterative gradient descent procedure, more complex than the Widrow-Hoff 
learning rule for the Adaline and the delta rule for the single-layer percep
tron. However, the basic principle of these methods is essentially the same: 
an error signal is minimized by using the gradient descent optimization 
technique. 

The back-propagation algorithm was first proposed by Werbos [520] in 
1974 and also independently introduced by other researchers (Parker [375], 
Rumelhart [413]). This method is the most popular type of supervised 
learning (see Section 3.1.5). It adjusts the weights of the neural network 
so as to minimize the square error over the training sequence, i.e. the pairs 
of input values and the corresponding desired output values. The weights 
are updated from the output layer backwards layer-by-layer to reduce the 
output errors, hence the name of this algorithm. 

The back-propagation learning algorithm can be presented as follows 

wfj (t + 1) = wfj (t) + 2"1 8f (t) xj (t) (3.10) 

where 

8f (t) = ef (t) f I (sf (t)) (3.11) 

for k=L 
for k = 1, ... ,L-1 

(3.12) 

yf (t) = f (sf (t)) (3.13) 

N k - 1 

sf (t) = L wfj (t) xj (t) (3.14) 
j=O 

and wfj denotes the weight of the i-th neuron in the k-th layer, referring 
to the j-th input, ef is the output of the linear part of the i-th neuron in 
the k-th layer, f is the activation function, yp is the desired output value 
(of the last layer), t = 1, 2, ... , is a time instant, indicating a learning step, 
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"1 is called the learning rate, assuming that "1 > 0, input and output values 
of i-th neuron in the k-th layer are denoted by xj and yf, respectively; Nk 
is the number of neurons in the k-th layer, k = 1, ... ,L. 

The modified version of the back-propagation algorithm with the mo
mentum term is expressed by the following formula [397], [88], instead of 
Equation (3.10) 

wfj (t + 1) = wfj (t) + 2 "1 e~ (t) f I (s~ (t)) xj (t) + a (wfj (t) - wfj (t -1)) 
(3.15) 

As mentioned earlier, the back-propagation method minimizes the error 
criterion, as the delta rule does for the single-layer perceptron. The criterion 
is the squares of the differences between the actual and the desired out
put values summed over the output neurons and all pairs of input/output 
vectors, that is 

NL 

Q(W) = L (yf - yf)2 (3.16) 
i=l 

where W represents the set of all the weights in the network, yf and yf 
are the network's actual and desired output values, respectively. 

According to the delta rule, the formula for updating the weights of a 
single-layer perceptron can be presented as follows 

/).Wij = Wij (t + 1) - Wij (t) = - "1 8Q 
8Wij 

(3.17) 

where the index k is omitted since only one layer is considered; and Q is 
given by Equation (3.16), where index L can also be omitted in the case of 
a one-layer network. 

It is very easy to determine the weight updating formulas, from Equation 
(3.17), for single-layer networks with linear neurons or for the single-layer 
perceptrons, with differentiable activation functions. The back-propagation 
method, for MLPs, leads to formula (3.10), which corresponds to the Equa
tion (3.17) in the case of multi-layer networks. 

The back-propagation learning method requires a training sequence, also 
called a learning set, which is used for training. After the learning process is 
complete a testing sequence is usually employed in order to assess the per
formance of the trained network. Both the learning and testing sequences 
contain input/output data pairs, that is, input patterns and correspond
ing desired output patterns. As mentioned earlier, back-propagation is a 
supervised algorithm, so the desired outputs are presented to the network. 

The following steps describe the back-propagation learning method: 

• Initialize (usually at random) all weights W to small values and set 
the learning rate "1 to a small positive value. 
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• Select, preferably at random, a pair from the training sequence (input 
and the corresponding desired output) and compute in a feed-forward 
direction the output values for each i-th neuron of the k-th layer, using 
Equations (3.14) and (3.13). 

• Apply the values yf, for i = 1, ... ,N L, obtained in the previous step, 
to compute the errors c:f, which are the difference between the actual 
output values yf and desired output values yr; see Equation (3.12). 

• Compute the delta quantities 8f, for i = 1, ... ,N L, substituting the 
errors c:f, obtained in the previous step, and the linear outputs sf, 
determined by formula (3.14) in the second step, into Equation (3.11). 

• Compute the values of the deltas for each of the preceding layers by 
back-propagating the errors using formulas (3.11) and (3.12) for all 
i = 1, ... ,NL in each of the layers k = 1, ... ,L. 

• Update all weights wfj according to Equation (3.10) for each layer 
k= 1, ... ,L. 

• Return to the second step and repeat the next steps for the newly 
selected training data pair until the total error has reached an ac
ceptable level. 

The back-propagation process, described above, is based on incremental 
learning, which means that the weights are updated after each presentation 
of the input data vector (input pattern). Another approach is to employ 
batch learning, where weights are modified only after all the patterns (all 
data vectors that constitute a finite learning sequence) have been presented 
to the network. The batch learning is formally expressed as the minimiza
tion of the following criterion 

M NL 

Q (W) = 2:2: (yf (t) - yf (t))2 (3.18) 
t=l i=l 

instead of that given by Equation (3.16); see [165] for details. 
The learning sequence is composed of the pairs {x (t) , Y (t)}, for 

t = 1, ... ,M, where x and yare input and desired output vectors, respec
tively, so x = [Xl, ... ,xnf and y = [Yl,' .. ,flmf; see Fig. 3.3. This kind 
of learning corresponds to summing the right-hand sides of Equation (3.17) 
over all the patterns of the training set. 

The presentation of every pair of the training sequence is called the 
epoch. The same training data can be presented many times to the network, 
during different epochs. The learning time from the initial weights can take 
hundreds of epochs - passes through the training set - to get good results. 
This depends on the problem to be solved, on the amount of learning data, 
and so on. 
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Batch learning, also called off-line updating [379], accumulates the errors 
over the whole learning sequence and performs the weight updating for a 
complete epoch, that is a complete pass through the training set. Errors for 
each pattern presentation are stored during the pass through the learning 
sequence. After an epoch of training, the error expressed by Equation (3.18) 
is computed and each weight is then modified according to the accumulated 
errors. To perform off-line training requires the whole learning sequence to 
be available prior to the start of the learning process. 

Incremental learning, i.e. adjusting the weights after each pattern is pre
sented rather than after each epoch, is a more commonly used method. 
However, in some cases, batch training may be more efficient. On the other 
hand, the requirement of having the whole learning sequence before starting 
the algorithm cannot always be met, for example in real-time control prob
lems or adaptive signal equalization [532]. 

The back-propagation algorithm is based on the gradient descent op
timization method, as shown above. This process of learning iteratively 
searches for a set of weights that minimize the error function over all pat
tern pairs. In conventional back-propagation, minimization takes place with 
respect to the mean-square-error (MSE). The MSE measure is given by 
itQ (W), where Q (W) is expressed by Equation (3.18). As well as the 
MSE error, other functions that measure the approximation error of the 
network can be defined. This kind of error measure, chosen for the back
propagation algorithm, should be a differentiable function and ought to 
tend toward zero as the collective differences between the desired and ac
tual output patterns decrease over the entire training set [379]. 

One of the earliest applications of the back-propagation algorithm was to 
train the NETtalk system, implemented on a VAX computer. This system 
was designed by Sejnowski and Rosenberg [460], [461] to convert English 
text into speech. A feed-forward neural network was trained by the back
propagation method to pronounce a written text. The input to the neural 
network was a 203-dimensional binary vector that encoded a window of 7 
consecutive characters (29 bits for each of the 7 characters, including punc
tuation marks). Thus, the input layer had 7 neural groups, each with 29 
neurons (one for each character, i.e. letters of the alphabet, space, comma, 
and period). The input text (a first grade level conversation) was converted 
to sound for the outputs, using a commercial speech synthesis module. The 
hidden layer of the neural network was composed of 80 neurons. The out
put layer had 26 neurons that encoded phonemes and drove the speech 
synthesizer, which generated sounds associated with the input phonemes. 
The desired output was a phoneme code giving the pronunciation of the 
letter at the center of the input window. The network, which produced 
sounds as it was learning phonetic rules, sounded uncannily like a child 
learning to read aloud. The network learned the phonetic rules during two 
weeks of CPU time on the VAX computer. It was trained on 1024 words 
from a set of English phoneme exemplars, and was capable of intelligible 
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speech after only 10 training cycles; but after 50 cycles it obtained an ac
curacy of 95 percent on the training data sequence. When the network was 
tested on a new text, it achieved generalization accuracy of 78 percent. 
The NETtalk system is often described in the literature on neural nets, 
e.g. [165], [355], [182]. 

The back-propagation method of neural network learning has been suc
cessfully applied to solve many difficult and diverse problems, such as 
pattern classification, function approximation, nonlinear system modeling, 
time-series prediction, image compression and reconstruction. In fact, the 
development of the back-propagation algorithm was one of the main reasons 
for the renewed interest in artificial neural networks, after the quiet (dark) 
research period caused by Misnky and Papert's publication [328] criticizing 
the perceptron. Some detailed information about the attack on the percep
trons can be found in [9]. Two of the reasons for the "quiet" years of the 
1970s were the failure of single-layer perceptrons to be able to solve such 
simple problems as the XOR example, mentioned in Section 3.1.2, and the 
lack of a general method of training multi-layer neural networks. 

The back-propagation training method also has some drawbacks. One 
of them is the fact that this algorithm, based on the steepest descent op
timization technique, runs the risk of being trapped in a local optimum, 
while the method should find a globally optimal solution. Of course, it is 
undesirable for this algorithm to get stuck in a local minimum, especially 
if this is located far from the global one. In this case, it is necessary to 
repeat the learning process, starting from a different initial point (initial 
weight values). In order to eliminate this drawback, the back-propagation 
method is often preceded by a special technique to choose an appropriate 
starting point. In some applications, a hybrid approach that combines a ge
netic algorithm or a clustering method with the back-propagation learning 
is employed (see Chapter 6), to avoid the local-minimum problem. 

3.1.4 RBF Networks 

Radial Basis Function (RBF) neural networks can be implemented within 
the standard architecture of the feed-forward multi-layer network with an 
input layer, one hidden layer, and an output layer. The output nodes are 
linear neurons. The hidden layer nodes differ from the typical neuron. In
stead of performing the weighted sum of the inputs (transformed by an acti
vation function), they realize the radial basis functions. These kind of func
tions were applied in the early 1960s for interpolation [318], and probability 
density estimation [376], later [116]. In 1987 they were employed by Powell 
[402] for high-dimensional interpolation. The RBF functions, used within a 
neural network framework, were proposed independently in 1988 by Broom
head and Lowe [52], Lee and Kil [295], Niranjan and Fallside [362], and by 
Moody and Darken [340], [341]. The RBF networks were adopted by other 
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researchers, and applied for specific tasks, like classification [406], modelling 
[84], control [451]. 

Different types of radial basis functions are considered in the literature, 
for example: the radial linear function, radial cubic function, thin plate 
spline function, multi-quadratic function, and shifted logarithm function 
[53]. The thin plate spline function and Gaussian function have the most 
interesting properties from the point of view of RBF neural network appli
cation. The former has been extensively used in the papers by Chen et a1. 
[82], [83], [84]. The latter, i.e. the Gaussian function, is unique, as it is the 
only radial basis function which can be written as a product of univariate 
functions, in the following form 

(3.19) 

where 11.11 is the Euclidean norm, x = [Xl, ... ,xnf and {tj= [{tjl, ... ,Xjnf. 
Therefore Gaussian functions are most often employed as the basis func

tions for hidden units of the RBF neural networks. 
Figure 3.4 illustrates an RBF network with hidden units, i.e. elements of 

the hidden layer, denoted by Gj , for j = 1, ... , T. These elements realize the 
radial basis functions, usually given by Equation (3.19). The input vector 
x = [Xl, ... ,xnf is a crisp-valued input. The components of the center 
vector {tj= [{tjl, ... ,Xjnf of the radial basis Gaussian function are centers 
of the univariate Gaussian functions. All the hidden units simultaneously 
receive the n-dimensional real-valued input vector x. Notice that the neural 
network weights are visible only in the output layer, not in the hidden layer. 

The RBF network, in the contrast to the MLP, performs a local tuning 
of the network parameters. Each hidden unit, in order to obtain its out
put value, calculates the Euclidean distance between the input vector and 
the center of the radial basis function. Thus, the learning process and the 
performance of the network is based on the measure of how close the input 
is to the RBF centers. The MLP neural networks realize the global weight 
tuning, based on the back-propagation of the output error. 

The output of the RBF network, given the input vector x, is the m
dimensional, crisp (real)-valued vector y = [YI, ... ,Ymf whose l-th com
ponent is expressed by 

r 

Yl = LWlj Gj (x) 
j=l 

where Gj (x), for j = 1, ... , r, are given by Equation (3.19). 

(3.20) 

Similarly to the Sections 3.1.2 and 3.1.3, for simplicity, the crisp input 
and output are not marked by a dash (used in Chapter 2), since here we 
do not need to distinguish between real variables and linguistic variables. 
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Input 
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Output 
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FIGURE 3.4. Architecture of REF neural network 

An RBF neural network can be trained by a supervised gradient-descent 
method, similar to the back-propagation algorithm [340], [398]. The Gaus
sian function is differentiable, so this method is suitable for tuning the 
parameters (centers and widths of the Gaussian functions), as well as the 
weights of the output layer. However, because of the local nature of the 
hidden units, other learning algorithms have been proposed. One of them 
is a hybrid approach that employs two different methods: one for tuning the 
parameters of the Gaussian functions and another for updating the weights 
of the output layer. Usually, this approach uses unsupervised learning of 
the center parameters and supervised learning (see Section 3.1.5) of the 
output-layer weights; without modifying the width parameters [340], [305]. 
Some details concerning these algorithms are presented, for example, in 
[165], [172]. 

It is worth mentioning the following conclusions, obtained by 
Wettschereck and Dietterich [524] from the comparison of the learning 
approaches, made for the NETtalk system (described in Section 3.1.3). 
Firstly: the RBF networks, with unsupervised learning of the centers and 
supervised learning of the output-layer weights, did not generalize nearly 
as well as the multi-layer perceptrons trained with the back-propagation 
algorithms. Secondly, generalized RBF networks, with supervised learning 
of the centers as well as the output-layer weights, were able to substantially 
exceed the generalization performance of the multi-layer perceptrons; see 
also [172]. 
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The generalized RBF network differs from the network presented in 
Fig. 3.4 only because of a bias applied to the output neuron. This is done 
simply by setting one of its weights equal to the bias and treating the asso
ciated radial basis function as a constant equal to 1. The bias is illustrated 
in Fig. 3.1, where Uo = 1, and Wo takes the value of the bias. Of course, the 
linear neuron does not contain the function f. 

Apart from the generalized RBF network, other modifications have also 
been proposed. For example, He and Lapedes [173J suggested using an 
RBF network that involves two hidden layers. In this network, the second 
hidden layer and the output layer are both linear, performing successive 
approximations of the functions of the first hidden layer; see also [172J. 

Moody and Darken [340J introduced a normalized RBF network. In this 
case the l-th component of the output vector y is expressed by 

(3.21) 

This means that the unweighted sum of all the hidden-unit outputs equals 
1, so the RBF network realizes a partition to unity, which is a desired 
mathematical property in function decomposition/approximation [523J. The 
normalization leads to "smoothness" regularization [165J. 

It should be noted that the network described by Equation (3.21) can be 
presented in the form shown in Fig. 3.5. 

FIGURE 3.5. Architecture of a normalized RBF network 

RBF neural networks, similarly to the multi-layer perceptrons, are uni
versal approximators. The RBF approximation theorem (see e.g. [286]) can 
be derived immediately from the classic Stone-Weierstrass theorem [94J . 
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The universality of RBF networks has also been proved, as described by 
Park and Sandberg [374]. It is not surprising therefore to find that always 
exists an RBF network capable of accurately mimicking a given MLP 
neural network, and vice versa [172]. 

3.1.5 Supervised and Unsupervised Learning 

The ability to learn is one of the most important features of neural net
works. Learning in an artificial neural network usually takes place by an 
adaptive process of weight modification, known as a learning algorithm or 
learning rule. The learning process can be seen as an optimization task, or, 
more precisely, as a " search" within a multidimensional parameter (weight) 
space for a solution, which gradually optimizes a prespecified objective (cri
terion) function [165]. There are number of different learning rules. The 
back-propagation learning method presented in Section 3.1.3 is one of the 
most popular learning algorithms, belonging to the group of supervised 
learning rules. 

In supervised learning, also called learning with a teacher, it is assumed 
that the learning process is supervised by a teacher who provides the net
work with a sequence of input-output examples. In addition, error correc
tion is conducted by the external teacher. The error expresses the difference 
between the actual and desired response of the network to a given input 
pattern. The sequence of examples, i.e. pairs of input and desired out
put patterns, is called a learning sequence or training sequence. Supervised 
learning can be realized as a method of minimizing a function that cor
responds to the error. Thus, the gradient steepest descent optimization 
algorithm [98] can be employed to perform the supervised learning. This 
method leads to the back-propagation algorithm, which performs learn
ing with a teacher. The Adaline learning rule, also called the Widrow-Hoff 
learning rule or least mean square (LMS), mentioned in Section 3.1.2, is a 
form of supervised learning, too. 

As explained above, in supervised learning, we assume that there is a 
teacher that presents input patterns to the network. The teacher also com
pares the resulting outputs with the desired ones. Then, the network ad
justs its weights in such a way that the difference between current and 
desired outputs is reduced. Although this approach has enjoyed much suc
cess in applications, it is not an imitation of a biological system's learning 
mechanism. Natural neurons are obviously not trained by anything like the 
back-propagation algorithm. 

In unsupervised or self-organized learning there is no external teacher to 
supervise the learning process. Therefore, it is also called learning without 
a teacher, but this terminology is not the most appropriate [584]. In this 
type of learning, no specific examples are provided to the network. The de
sired response is not known, so explicit error information cannot be used to 
improve network behavior. Since no information is available concerning cor-
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rectness or incorrectness of responses, the learning process must somehow 
be accomplished based on observations of responses to inputs that we have 
very little or no knowledge about. Using no supervision from any teacher, 
neural networks with unsupervised learning adapt their weights and verify 
the results based only on the input patterns. Because no desired output 
is displayed during the learning process, the results are unpredictable as 
regards firing patterns of specific neurons. However, the network develops 
emergent properties of the learning patterns through a self-organization 
process. For example, input patterns may be classified according to their 
similarity, so that similar patterns activate the same neuron (see e.g. [517]). 

The technique of unsupervised learning is often applied to perform clus
tering (see Section 6.3, in Chapter 6) as the unsupervised classification of 
objects without providing information about the actual classes. This kind 
of learning corresponds to the minimal a priori information available. The 
self-organizing algorithm presented in Section 3.1.8 is an example of unsu
pervised clustering. 

It is worth mentioning that in addition to the supervised and unsu
pervised learning approaches, so-called reinforcement learning is also con
sidered in the literature; see e.g. [165], [177], [182], [273], [379]. In this 
kind of learning, the network is given input data but is not supplied with 
the desired outputs. Instead, it is occasionally provided a "performance 
score" that tells it how well it has worked since the last time it received 
such "evaluative" teacher response. In the extreme case, this information 
(from a teacher) only says whether the output produced by the network 
represents a right or wrong answer. This learning approach differs from 
supervised learning, because in the latter the teacher delivers the" correct 
answer". Reinforcement learning rules may be viewed as stochastic search 
techniques that attempt to maximize the probability of positive external 
reinforcement for a given learning sequence. The idea that the network 
outputs can be reinforced to increase the probability of producing desired 
responses comes from the reinforcement defined in [472]. Positive and nega
tive reinforcement have been considered as forms of reward or punishment. 
This approach imitates behavioral responses in a natural environment. 

3.1.6 Competitive Learning 

To perform unsupervised learning a competitive learning rule may be em
ployed. For example, a neural network composed of two layers can be used. 
The first layer may be called the input layer, and the second one - the com
petitive layer. The input layer receives the available data. The competitive 
layer contains neurons that compete with each other in order to respond 
to the input data. The network, in its simplest form, works in accordance 
with a winner takes all (WTA) strategy. The neuron that wins the compe
tition is active (fired), others are turned off. For details, see e.g. [172], [165], 
[584]. Figure 3.6 illustrates this kind of learning rule. Each output neuron 
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is a linear neuron, which is represented by the model shown in Fig. 3.1, but 
without the non-linear activation function f. These neurons thus produce 
their output values by computing the weighted sum of their input values 

n 

Yj = LWjiXi =wJx 
i=l 

where x = [x}, ... ,xnf, and Wj = [Wjl, ... ,Wjnf, for j = 1, ... ,c. 

(3.22) 

The neuron that has the maximum response due to input x is called 
the winner or winning neuron. In Fig. 3.6, the winning output neuron is 
denoted by j*, so the output value of this neuron, Yj*, is expressed as 

Yj* = m,ax {Yj} 
l~J~c 

where Yj is given by Equation (3.22). 
Thus, the neuron j* is the winner if 

for all j =1= j* 

which can be written as 

IIWj* - xii ~ Ilwj - xII for all j =1= j* 

if IIWjll = 1 for all j = 1, ... ,c. 

(3.23) 

In this case, the winner is the neuron with the weight vector closest, in 
the sense of the Euclidean norm, to the input vector. More information 
about this kind of learning can be found in [165], [172], [584], as well as in 
other books on neural networks. 

The competitive learning rule allows neurons to compete for the exclusive 
right to respond to a particular training input pattern. This method can be 
viewed as a sophisticated clustering technique, whose purpose is to divide 
a set of input patterns into a number of clusters such that patterns of the 
same cluster display a certain type of similarity [183]; see also e.g. [286]. 
In Sections 3.1.8 and 3.1.9 learning algorithms that use the WTA strategy 
and competitive learning are discussed. 

In classical competitive learning, the weight vector of the winning neuron 
is the only one updated in a given unsupervised learning step. This is done 
by the following formula 

!::::'Wj ='TJ(x-Wj) (3.24) 

or, in the form of individual weight modification, by the expression 

(3.25) 

for j = 1, ... ,c, where!::::. denotes the difference between the new (updated) 
and the old (pre-modification) values of the weights (or weight vectors), 'I] 
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FIGURE 3.6. Illustration of the winner takes all strategy 

is a small positive constant, which denotes the learning rate, and usually 
decreases during the learning process; see Sections 3.1.8 and 3.1.9, par
ticularly: Equations (3.29) and (3.30) . 

In the WTA strategy, described above, only the winning neuron, j*, 
is updated according formulas (3.24) or (3.24) . The learning algorithm, 
presented in Section 3.1.8, modifies not only the weights of the winning 
neuron but also its neighbors' weight vectors. 

Neural networks that employ competitive learning, in the simplest form, 
have a single layer of output neurons, each of which is fully connected to 
the input neurons. Moreover, the networks may include lateral connections 
among the output neurons [165], [172]. 

The idea of competitive learning was proposed in 1973, by von der Mals
burg [510], who worked on self-organization with reference to orientation 
sensitive nerve cells in the striate cortex. A competitive learning network 
was also presented in [534]. Fukushima [138] introduced this idea of learning 
to the self-organizing multi-layer neural network known as the cognitron. 
Grossberg developed competitive learning to adaptive pattern classification 
networks [154], [155]. 

Competitive learning usually employs the Hebbian learning rule (see Sec
tion 3.1.7), in its extended form, and the WTA strategy. 
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3.1. 7 H ebbian Learning Rule 

The earliest learning method for artificial neural networks was proposed by 
Hebb and published in his book [174], in 1949. This quite simple algorithm 
is known as the Hebbian learning rule, and it has provided the inspiration 
for most of the learning rules that have been developed. The first version 
of this rule has evolved in a number of directions. Many of the learning 
methods proposed by various researchers are based on some form of the 
Hebbian rule. 

The work of Hebb was based upon physiological and psychological re
search, in which he presented an intuitively appealing hypothesis about 
how a set of biological neurons might learn. His theory involved only local 
interactions between neurons with no global teacher. The training is thus 
unsupervised. Since his work did not include a mathematical analysis, his 
ideas seem to be very clear and compelling, so they are generally accepted; 
see e.g.[517] . 

The basic idea of the Hebbian learning rule can be stated simply as 
follows: If a neuron receives an input from another neuron, and if both 
neurons are highly active, the connection weight between them should be 
strengthened [355], [125], [172]. 

The Hebbian learning rule, in its simplest mathematical form, can be 
expressed as follows [487] 

Wjl (t + 1) = Wjl (t) +"., . Yj (t) . Xl (t) (3.26) 

where Wjl is a connection weight between the l-th and j-th neurons, Xl 

denotes the output of the l-th neuron, entered into the input of the j-th 
neuron, Yj is the output of the j-th neuron, "., is a positive constant that de
termines the rate of learning, and t = 1,2, . . . , is a time instant, indicating 
a learning step. 

Two neurons considered with reference to this learning rule are illustrated 
in Fig. 3.7. 

'--v---" 
neuronl 

Yj 

w,lt+ 1)= w;i,t )+11' y.(t }x,{t) '--v---" . ; 

neuronj 

FIGURE 3.7. Two neurons peforming Hebbian learning 

More information about the Hebbian learning rule is to be found in the 
literature on neural networks, e.g. those cited above, as well as many others. 

It is worth emphasizing that in competitive learning, as described in 
Section 3.1.5, the output neurons compete among themselves in order to 
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be the active (fired) one. Thus, only a single output neuron is active at any 
one time. In a neural network based on Hebbian learning several output 
neurons may be active simultaneously; see e.g. [172] for details. 

The Hebbian rule is designed to train the network to function as a pat
tern associator. A stimulus pattern presented to the input of the network 
should produce an output pattern that is associated with the input pat
tern. Thus, the network ought to generate the output pattern that it has 
learned to associate with the input pattern. Alternatively, if a part of a 
pattern is presented to the network, it should generate a complete version 
of that pattern. This is basically the idea of content-addresable memories 
and associative memories [251]. 

Many modifications of the basic Hebbian learning rule have been carried 
out, for example, the methods known as Ojas' rule [368], as well as Yuille 
et al. rule [558], described in the literature on neural networks, e.g. [165], 
[379], [182]. 

3.1.8 Kohonen's Self-Organizing Neural Network 
Self-organization is an unsupervised learning process whereby significant 
patterns or features in the input data are discovered. In the context of 
a neural network, this kind of learning is a process in which the weights 
of locally interacting neurons are adaptively modified in response to in
put excitations and in accordance with a learning rule until a final useful 
configuration develops. The local interaction of neurons means that the 
changes in the behavior of a neuron only directly affect the behavior of its 
immediate neighborhood. The configuration evolves via self-organization 
until it attains its final form. 

The self-organizing feature-mapping (SOFM) algorithm, introduced by 
Kohonen [261] realizes the self-organization described above. The purpose 
of this method is to capture the topology and probability distribution of 
input data. 

The self-organizing neural networks developed by Kohonen [263] are also 
called topology-preserving maps, since SOFM refers to topology-preserving 
competitive learning. The networks (self-organizing) can learn without be
ing given the correct answer for an input pattern. They closely imitate 
the topology-preserving self-organizing mappings that exist in neurobio
logical systems. It is believed that biological topology-preserving maps are 
not entirely preprogrammed by genes and that some sort of unsupervised 
self-organizing learning phenomenon exists that tunes such maps during 
development. This feature is not implemented in other artificial neural net
works. 

Kohonen's self-organizing neural networks are suitable for data clustering 
and they can be used for unsupervised pattern recognition; see Section 6.3, 
in Chapter 6. The networks impose a neighborhood constraint on the out-
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put neurons, such that a particular topological property in the input data 
is reflected in the weights of output neurons. 

The SOFM algorithm is supposed to convert patterns of arbitrary di
mensionality into the responses of arbitrary one- or two-dimensional arrays 
of neurons. The basic SOFM network consists of two layers. The architec
ture of Kohonen's SOFM is illustrated in Fig. 3.8. The first layer is com
posed of input neurons and the second contains output neurons. The output 
layer can be one-dimensional, as Fig. 3.8 (a) presents, or two-dimensional, 
as Fig. 3.8 (b) portrays. The output neurons are extensively interconnected 
with many local connections. 

a) Output 
layer 

Yc 

b) 

FIGURE 3.8. Kohonen's SOFM with a) one-dimensional, b) two-dimensional 
output layer 

In Kohonen's SOFM algorithm, the output responses are ordered accord
ing to some characteristic feature of the input vectors. There are adjustable 
weights associated with connections between input and output neurons, as 
shown in Fig. 3.8. Every neuron thus has its own weights which are adap
tive, in order to implement self-organization. Input vectors are presented 
sequentially in time without providing the desired output. The adaptive 
process of learning causes clustering (see Section 6.3) that samples the in
put space such that the point density function of the" cluster centers" tends 
to approximate the probability density function of the input vectors. In ad
dition, the weights will be organized in such a way that topologically close 
neurons are sensitive to inputs that are physically similar. Thus, output 
neurons will be organized in a "natural" manner. In fact, the learning algo
rithm summarizes the history of the input data along with their topological 
relationships in the original pattern space. 

The SOFM algorithm uses the unsupervised learning method to modify 
the weights to model the feature found in the training data. A topological 
map of the weight vectors is automatically created by a cyclic process of 
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comparing input patterns to weight vectors for each neuron. The weight 
vector to which inputs are matched is optimized selectively to represent an 
average of the training data. As a result, all the training data are expressed 
by the weight vectors of the map which can be considered prototypes (clus
ter centers) of the input patterns. 

The characteristics of topology-preserving mappings, with reference to 
this self-organizing algorithm, are observed in the context of neighborhood 
of the neurons. This means that the neurons located physically next to 
each other will respond to classes of input vectors that are likewise next 
to each other. The relationship among neurons can be easily visualized on 
two-dimensional maps, used in many applications. For details, see [263), 
and e.g. [304), [584), [85), [105), [165). 

Kohonen's SOFM algorithm can be presented by the following steps: 

• Initialize the weights Wji, for i = 1, ... , n, and j = 1, ... , c, to small 
values, at random; n and c denote the number of neurons in the 
input and output layers, respectively. Set the initial radius of the 
neighborhood around neuron j as N j (0). 

• Present the current (at time t) input data Xl (t) , ... ,Xn (t), where 
t = 1,2, ... , is a time instant, indicating a learning step. 

• Calculate the distances, dj , between the input vector and weight vec
tors 

n 

dj (t) = L (Xi (t) - Wji (t))2 (3.27) 
i=l 

for j = 1, ... , c. 

• Determine the output neuron j* with the minimal distance, that is 

dj* (t) = ~in {t (Xi (t) - Wji (t))2} 
1";3";C . 

0=1 

(3.28) 

• Update the weights for the winning output neuron j* and all its 
neighbors in the neighborhood defined by N j * (t). The new weights 
are modified according to the formula 

Wji (t + 1) = Wji (t) +"., (t) (Xi (t) - Wji (t)) (3.29) 

where"., (t) is the learning rate; 0 < "., (t) < 1. Both"., (t) and N j * (t) 
decrease as t increases. The neighborhood Nj* (t) can be a square, 
rectangular or hexagonal neighborhood; see e.g. [263), [584), [304). 

• If the stopping criteria are not met, modify the neighborhood func
tion, the learning rate, and return to the second step, otherwise stop. 
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This algorithm is similar to that of competitive learning networks. Not 
only are the winning neuron's weights updated, however, but also the 
weights of the neurons in the neighborhood around the winning neuron. 
As the algorithm states, the neighborhood size slowly decreases with each 
iteration. The function Nj. (t) can be viewed as a square, rectangular or 
hexagonal neighborhood, and only the weights of neurons in this neighbor
hood are modified using formula (3.29). However, the neighborhood can be 
defined by the so-called neighborhood function. In this case, N j • (t) can play 
the role of a neighborhood function that may be defined in several ways; 
see e.g. [101], including the rectangular neighborhood. Treating Nj. (t) as 
a neighborhood function, it is convenient to rewrite Equation (3.29) as 
follows 

Wji (t + 1) = Wji (t) + 'fJ (t) N j • (t) (Xi (t) - Wji (t)) 

taking the neighborhood function into account. 
This form of the formula updates, in the same way, only the weights 

of neurons in the neighborhood defined by this function. The rectangular 
neighborhood function is expressed by 

N .• (t) = {I for d j • (t) ::;; ), ~t) 
J 0 otherwIse 

where), (t) determines the size of the winner neuron's neighborhood and 
decreases with iterations t. Both the neighborhood size as well as the learn
ing rate, 'fJ (t), decrease gradually with each iteration - in order to achieve 
a better convergence of the algorithm. 

The distance denoted as dj is a distance in the sense of a Euclidean 
norm - between the input vector composed of Xl (t) , ... ,Xn (t) and the 
weight vector of the output neuron j, where j = 1, ... , c. Each distance, d j , 

for j = 1, ... , c, can be treated as the output of neuron j. After the input 
data has been fed into the network, the weights are updated, according to 
Equation (3.29), and tend to partition the input data space, resulting in 
c clusters, corresponding to each output neuron. The weight vectors asso
ciated with the neurons j, for j = 1, ... , c, can be considered as "centers" 
of these clusters, i.e. the prototypes characterizing the clusters; see Sec
tions 3.1.9 and 6.3.1. As we can see, the number of clusters, in this case, 
equals the number of output neurons, so it is obvious that this must be 
prespecified for the network. 

Kohonen's learning method differs significantly from the Hebbian rule 
(see Section 3.1.7). The basic idea of Kohonen's network is to have an 
output layer of neurons which arrange their weight vectors such that they 
are distributed in Rn approximately proportional to the probability density 
function used to select the input vectors provided to train the network. 
Thus, the training data for this network is assumed to consist of a sequence 
of input vectors, drawn at random in accordance with a fixed probability 
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density function [263], [177]. The graphic illustrations of the weight vector 
distribution during the ordering process, performed by Kohonen's network 
presented in the literature, e.g. [263], [304], [584], [85], [105], [165], on R2, 
usually refer to uniform distribution of input data vectors. 

The graphical visualizations mentioned above portray how the SOFM 
algorithm adaptively transforms the input data in a topologically ordered 
fashion. The first figure usually refers to the initial, randomly chosen weight 
vectors, and shows the points concentrated around the center of the input 
space, i.e. the weights initialized randomly near a certain point (in the 
center). The next figures illustrate how the weight vectors spread out to fill 
almost all the space, in accordance to the uniform distribution of the input 
vectors. It can be observed that there are two phases to the formation of the 
map: an ordering phase and a convergence phase. Initial formation of the 
correct topological ordering of the weight vectors takes place during the 
first (ordering) phase, resulting in this task being roughly accomplished. 
Then, fine-tuning of the map is performed during the convergence phase, 
when the map converges asymptotically to a solution that approximates 
to the probability density function according to which the input vectors 
have been chosen. During this phase, values of the neighborhood size and 
the learning rate are very small - to keep the convergence slow. For good 
results, the convergence phase may involve many more iterations than the 
ordering phase (see [165] for the details). The density of the weight vectors 
in the weight space then follows the uniform probability distribution of the 
input vectors. 

The architecture of Kohonen's SOFM network often consists of a two
dimensional structure, in the form of an array of linear neurons, where 
each neuron receives the same input vector, in Rn; see Fig. 3.8 (b). Each 
neuron in the array is characterized by an n-dimensional weight vector. 
The weight vector of the neuron j, for j = 1, ... , c, may be viewed as a 
position vector that defines a "virtual position" for neuron j in Rn. This 
interpretation allows the changes of the weight vectors (such as that por
trayed in the above mentioned figures) to be illustrated as movements of the 
neurons associated with the weight vectors. It is important to emphasize 
that, in fact, no physical movements of the neurons take place during the 
self-organizing learning process. However, this may be confusing, since, for 
better visualization, the illustrations that show the changes of the weights 
display the lines connecting the weight vectors of the neurons that are 
topologically closest neighbors. 

It have been explained that Kohonen's SOFM algorithm realizes unsu
pervised clustering of the input data; see also, e.g. [203]. Improved classifica
tion performance can be obtained by using this algorithm with a supervised 
learning technique, such as learning vector quantization (LVQ) , described 
in Section 3.1.9. The SOFM learning method may be viewed as the first of 
two stages of a classification algorithm which employs the LVQ to perform 
the second stage. This approach is presented, for instance, in [172]. Vector 
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quantization is one of many applications of Kohonen's SOFM algorithm. 
Others refer, for example, to a phonetic typewriter [264], equalization prob
lems [266], [171], texture segmentation [369], control of robot arms [315]; 
see also [172]. In practical tasks, many input patterns are presented to the 
network, one at a time. These networks are therefore suitable for process
ing a large amount of data. Moreover, the input vectors are often high 
dimensional. 

3.1.9 Learning Vector Quantization 

Quantization is usually viewed as the process of transforming an analog 
or continuous valued variable into a discrete variable. Vector quantization 
(VQ) networks learn to quantize and encode input patterns from the en
vironment. The vector quantization theory refers to the theoretical basis 
of the idea of vector quantization. The motivation behind this theory is 
dimensionality reduction or data compression [153], [145]. The main aim of 
vector quantization is to store a large set of data vectors (input vectors) by 
finding a smaller set of prototypes, so as to provide a "good" approximation 
of the original data (input) space. 

One common application of competitive learning (Section 3.1.5) is adap
tive vector quantization for data compression, e.g. image or speech data. 
In image processing or speech recognition, large quantities of data must be 
stored, processed, and possibly transmitted over communication channels. 
The vector quantization approach is very helpful in such situations when 
a large amount of data is to be reduced, for transmission or storage pur
poses. This technique allows the input space to be divided into a number of 
distinct regions, with a template (prototype) defined for each of them. The 
problem is to categorize a given set of data into the templates, so instead 
of using the data (vectors) itself, the corresponding templates, which repre
sent encoded versions of the data vectors, may be employed. The template 
is treated as a "reconstruction vector", and also is called a codevector (or 
prototype); see Section 6.3.1. If a new input vector is presented, the region 
in which this vector lies is first determined, and then - the encoded version 
of the "reconstruction vector" corresponding to this region is obtained as 
a result of vector quantization. The set of all possible codevectors (proto
types) is usually called a codebook, and the prototypes - codebook vectors. 
In [263], the terms reference vector and reference set, corresponding to 
prototype and code book, respectively, are used. 

Learning vector quantization (LVQ), proposed by Kohonen [262] in 1986, 
and later improved [265], is a pattern classification method, which is a su
pervised learning technique. Three versions of this algorithm are described 
in [265]: LVQl, LVQ2, LVQ3. Improvements have been introduced to bet
ter conform to classifiers based on the Bayesian approach; see e.g. in [116]. 
The differences between these LVQ methods are also presented, e.g. in 
[243], and a comparison with other algorithms in [42]. General information 
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about vector quantization and learning vector quantization can be found, 
for example, in [172], [379], [229], [101], [285]. 

The architecture of an LVQ neural network is essentially the same as 
that of a Kohonen's SOFM, but with no topological structure assumed 
for the output neurons. In addition, each output neuron is associated with 
a class that it represents. Thus, the network looks like that portrayed in 
Fig. 3.8 (a), except that each of the output neurons is assigned to a given 
class. A very simple example is depicted in Fig. 3.9, assuming that input 
vector is three-dimensional, that is n = 3, and the input space is divided 
into five clusters, c = 5, so there are five output neurons, associated with 
two classes. Neurons 1, 2, 3 represent clusters that belong to class 1. The 
clusters of neurons 4, 5 are in class 2. 

y, 

Y2 class 1 

Y3 

Y4 
class 2 

Ys 

FIGURE 3.9. A simple example of LVQ network 

It was stated in Section 3.1.8 that the weight vectors obtained after the 
learning process, by Kohonen's SOFM network, can be viewed as cluster 
centers (prototypes). The clusters are associated with the output neurons 
corresponding to these weights. It has also been mentioned that the conver
gence phase of this learning algorithm, i.e. the fine-tuning process, usually 
takes many iterations in order to obtain good results. To improve the net
work's classification performance, the LVQ algorithm has been proposed 
to realize two-stage learning. In the first stage, the unsupervised SOFM 
method is employed, and then, in the second stage, the supervised LVQ 
algorithm is applied to correct the values of the prototypes. The second 
stage uses information about the known classes for each item of training 
input data. In fact, the LVQ is a method that modifies the prototype values 
according to the classification results. This is done based on initial values 
of cluster prototypes, for example, produced by the SOFM algorithm (or 
generated in other ways), and a learning sequence containing input vectors 
and the corresponding classes. If an input data vector is misclassified, then 
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the prototype value of the winning output neuron is updated in the form of 
"punishment" for this false classification. Otherwise, the updating formula 
"rewards" the winning neuron. The LVQ algorithm can be presented in the 
following steps. 

• Initialize the cluster prototypes, using for instance, Kohonen's SOFM 
method, resulting in the initial values VI (0), ... ,Vc (0). 

• Label each prototype vector (cluster), assigning each of them a proper 
class. 

• Present the current (at time t) input data vector, x (t), selected at 
random 

where t = 1,2, ... , is a time instant, indicating a learning step. Find 
the output neuron j associated with the prototype vector that is 
closest to the input vector, in the sense of the Euclidean norm, i.e. so 
that 

IIx(t) -Vj (t)1I 

for j = 1, ... , c is a minimum. 

• If x (t) and Vj (t) belong to the same class, update Vj (t) by the 
formula 

Vj (t + 1) = Vj (t) + 1] (t) (x (t) - Vj (t)) 

Otherwise, modify V j (t) by 

Vj (t + 1) = Vj (t) -1] (t) (x (t) - Vj (t)) 

(3.30) 

(3.31) 

The learning rate 1] (t) is a positive small constant and it decreases 
with each iteration, t. 

• If the stopping criteria (e.g. the desired number of iterations) are not 
met, change the value of the learning rate appropriately, and return to 
the third step, otherwise stop. The algorithm can also be terminated 
if no misclassifications occur. 

The learning rate 1] (t) is initially chosen as a small number and it is 
reduced linearly to zero after a prespecified number of iterations. The up
dating formulas (3.30) and (3.31) move the prototype vectors towards the 
input vectors that belong to the same class and away from the input vectors 
from other classes. 

The algorithm presented is the basic version of the LVQ families, and 
applies to the LVQ1. The improved versions, LVQ2 and LVQ3 attempt to 
use the training data more efficiently by updating not only the weights of 
the winning neurons but also the weights of their neighbors. For details, 
see e.g. [243], [407]. 
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3.1.10 Other Types of Neural Networks 

Neural networks are usually trained using either supervised or unsupervised 
learning methods (see Section 3.1.5). The perceptron, as well as the RBF 
network (portrayed in Sections 3.1.2 and 3.1.4, respectively) are examples of 
networks that employ supervised learning. For both of these, the idea of the 
back-propagation algorithm can be applied. The LVQ network presented in 
Section 3.1.9 also uses a supervised algorithm. Kohonen's SOFM network, 
however, considered in Section 3.1.8, is an example of the networks that 
apply unsupervised learning methods. As mentioned in Section 3.1.7, there 
are various forms of the Hebbian learning rule. Different neural networks 
apply this in its supervised or unsupervised version (see e.g. [379]). 

There are many other neural networks known in the literature, apart from 
those networks mentioned above and presented in the previous sections. 
They implement supervised or unsupervised learning methods, or both, in 
a hybrid approach. Some of them will be described briefly in this section. 

Hopfield networks, introduced and developed in [192]' [193], [194], [196), 
can employ supervised or unsupervised learning methods [379). These net
works may be viewed as nonlinear associative memories (also called content
addressable memories) [172), [584), [125). This means that they can store 
a set of pattern associations, i.e. input-output vector pairs, and recall pat
terns that are similar to the input patterns (see also Section 3.1. 7). It is 
worth emphasizing that the networks not only learn the specific pattern 
pairs that were used for training. They are also able to recall the desired 
response patterns in situations where the input patterns entered into the 
networks are similar, but not identical, to the training input patterns. The 
architecture of an associative memory neural network may be feed-forward 
or recurrent (iterative). In feed-forward networks, information flows from 
the input to the output neurons, while in recurrent networks, there are con
nections between the neurons that form closed (feedback) loops. Thus, in 
this case, the output signals can also be propagated to the input neurons. 
The Hopfield network is a single-layer feedback (recurrent) neural network. 
Different versions of this network, introduced in [192), [193), [194), [196), 
are described e.g. in [125), as well as the Bidirectional Associative Memory 
(BAM), developed by Kosko [271), [272). Both kinds of networks are closely 
related. The interested reader can find more information about the Hopfield 
networks and BAMs in, [105), [177), [243), [584). The Hopfield network, pre
sented in [195), has been applied to solve the well-known traveling salesman 
problem (TSP), which is an NP-complete, optimization task. 

The so-called ART (Adaptive Resonance Theory) networks, i.e. the ART 1 , 
ART2, and ART3, are known as Carpenter/Grossberg's networks [155), 
[69), [70], [71), [156], [72). These networks perform unsupervised clustering 
and prototype generation, similarly to the networks that employ a single 
Kohonen's layer with competitive learning (see Sections 3.1.5 and 3.1.8). A 
novel feature of the ART! network is the controlled discovery of clusters, 
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so the user can control the degree of similarity of patterns placed on the 
same cluster. Moreover, this network can deal with new clusters without 
affecting the storage or recall capabilities for clusters already learned. Thus, 
these networks imitate the ability of human memory to learn many new 
things without forgetting material learned in the past. The ARTI network 
has been designed for clustering binary vectors, ART2 accepts continuous
valued vectors. They are described in many books on neural networks, e.g. 
[125], [134], [165], [243], [286], [379], [584]. 

The neural network called the cognitron, introduced by Fukushima [138], 
and the new version, called the neocognitron [140], also employ unsuper
vised learning. The more recent neocognitron [139] is a hierarchical feed
forward network that can use either supervised or unsupervised learning 
methods. These networks are based on biological visual neural systems. 
They have been applied to handwritten character recognition. 

The network introduced by Hecht-Nielsen [175], [176], which is called 
the counterpropagation network, applies both unsupervised and supervised 
learning methods, as a hybrid approach. This network looks like a two-layer 
perceptron (with an input layer, one hidden layer, and an output layer); 
see Section 3.1.2. It is trained in two stages. Firstly, a competitive learning 
and the WTA strategy (see Section 3.1.6) are employed, so unsupervised 
learning takes place. During this stage of learning, the input vectors are 
clustered, similarly to Kohonen's network with a one-dimensional output 
layer (see Section 3.1.8). The intermediate layer is thus called the clustering 
layer. During the second stage of learning, the weights associated with 
connections between the clustering layer and the output layer are updated 
to produce the desired response. This is realized by supervised learning. The 
counterpropagation network can be applied in pattern classification, data 
compression, function approximation, statistical analysis. More information 
about this network can be found, for example, in [125], [243], [584]. 

Other types of neural networks are presented in the literature, for in
stance, probabilistic neural networks, introduced by Specht [476], [477]. 
They use probability density functions and incorporate Bayesian decision 
theory; see e.g. [379]. 

Different neural network paradigms and their applications are to be found 
in [471]. 

3.2 Fuzzy Neural Networks 

The name fuzzy neural networks suggests that it refers to neural networks 
that are fuzzy. This means that some kind of fuzziness has been intro
duced to standard neural networks, resulting in the networks with fuzzy 
signals, and fuzzy weights. This name applies, therefore, to networks ob
tained by the direct fuzzification of signals and weights, or networks com-
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posed of fuzzy neurons [427]. Multi-layer feed-forward neural networks, 
fuzzified in this way, have been studied in [57], [60], [61], [169], [170], 
[56], as well as in [215], [205], [216], [207], [206], [208]. Other types of 
neuro-fuzzy networks, for example networks created by employing fuzzy 
set operators (T-norms and S-norms) to standard neural networks, may 
be called hybrid neural networks [56]. The connectionist networks that rep
resent fuzzy logic systems are called fuzzy inference neural networks rather 
than fuzzy neural networks, because they are, in fact, not fuzzy. These kind 
of networks will be presented in Section 3.3. However, different connec
tionist neuro-fuzzy systems are called fuzzy neural networks in the litera
ture [159], [384], [551], [581]. 

Several types of fuzzy neurons have been introduced with the aid of logic 
operations, as fuzzy set connectives [382], [385], [386], [387]. The AND 
and OR neurons realize "pure" logic operations on the membership values. 
The standard implementation of the fuzzy set connectives involves trian
gular norms that mean that the AND and OR operators are realized by 
some T-norms and S-norms, respectively. As a straightforward extension 
of these two neurons, the OR/AND neuron has been constructed by putting 
several AND and OR neurons into a single two-layer structure [185]. This 
fuzzy neuron is treated as a single computational entity, but it can also 
be seen as a small fuzzy neural network proposed by the authors. The 
AND, OR, as well as OR/AND neurons are called logic-based neurons. 
A nonlinear processing element, which realizes the sigmoidal function, for 
example, can be added to the logic-based neuron. 

It is worth mentioning that, in fact, the first ever neuron, historically 
introduced by McCulloch and Pitts [317], performed logical operations, i.e. 
inclusive OR and AND [327], [9]. In [317] the authors describe a logical 
calculus of neural networks. 

In [56] the hybrid neural network combines signals and weights using 
the T-norm or S-norm operator and then inputs the result into a transfer 
function. Thus, the neurons perform similarly to the AND and OR fuzzy 
neurons proposed in [382], with the nonlinear element. 

Another kind of fuzzy neuron, called the 0 WA -neuron, has been pro
posed by Yager [542]. The OW A-neuron is based on the Ordered Weighted 
Averaging (OWA) operator introduced by Yager in [543]; see also [548]. The 
OWA aggregation operators are closely related to linguistic quantifiers. The 
OW A-neurons have the same inputs as classical neurons. However, instead 
of using an activation function, they are described by an OWA weight
ing vector, which determines the output or firing level of the OW A-neuron 
[544], [545]. 

Fuzzy neurons and fuzzy neural networks were first introduced by Lee 
and Lee [292], [293], [294], in the early 1970s. Their fuzzy neurons were 
understood as a fuzzy generalization of the McCulloch-Pitts' neuron model. 
The fuzzy neural networks were developed by incorporating fuzzy sets into 
neural networks. However, very little research was done on the subject at 
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that time. Later, the classical perceptron [409J was considered with the 
addition of membership functions, and called the fuzzy perceptron [248J. 
Then, Yamakawa's fuzzy neuron was proposed [552], [550], [551], [553J. 
The term fuzzy perceptron with reference to the multi-layer perceptron (see 
Section 3.1.2) is used in [249], [372], [330], [333J. Thus, after the very little 
activity in this field during 1980s, more papers on fuzzy neural networks 
have appeared since 1990; examples of these are cited above. 

A fuzzy neural network with fuzzy signals and fuzzy weights is presented 
in the form of classical multi-layer neural network (see Fig. 3.3), where sig
nals and weights are fuzzy numbers, which are usually triangular fuzzy 
sets. The neurons realize the same operations in both classical neural net
works and fuzzy neural networks. They multiply signals by corresponding 
weights and add up the results. Transfer functions then change the results 
of this linear operation to neuron outputs. The transfer functions are most 
often sigmoidal functions (see Section 3.1). There are basically two ways of 
computing the output signals in a fuzzy neural network. One of them uses 
the extension principle (Section 2.1.1), another one a-cuts (Definition 12 
in Section 2.1.1) and interval arithmetic [56J. Fuzzy neural networks can 
be trained by use of fuzzified versions of the back-propagation algorithm. 
In [57], [58], [60], [61], [170J direct fuzzification of the back-propagation 
method, called the fuzz~fied delta rule, was applied. Another algorithm for 
training fuzzy neural networks, based on the standard back-propagation 
method, was developed in [204], [217], [206J. A two-stage training algo
rithm was proposed in [64], [279], [405J. These methods are also described 
in [56J. 

The following definition of a fuzzy neural network is formulated in [343J: 

Definition 32 A fuzzy neural network is a structure F N N (U, W, X, Y, L) 
with the specifications. 

• U is a non-empty set of fuzzy neurons and auxiliary units. 
• The structure and parameters of the fuzzy neural network 

are described by the weight matrix W given by Cartesian 
product U xU -+ Dw , where Dwis the domain of weihgts. 

• The vector of fuzzy inputs X E Dx describes the input for the 
fuzzy neural network; Dxis the domain of the input vector. 

• The vector of fuzzy outputs Y E D y describes the output for the 
fuzzy neural network; Dyis the domain of the output vector. 

• The learning algorithm L describes the mechanism for learning 
and adaptation to the new information; usually by changing 
the weight matrix W. 

It should be noted that, according to this definition, the term fuzzy neu
ral network is frequently applied in the literature without a rationale or 
sufficient specifications. It is suggested in [343J to use the name fuzzy net
work for the connectionist architecture based on fuzzy logic or fuzzy arith-
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metic operations but not having the real neuron-like processing units. Two 
groups of fuzzy neural networks have been distinguished: fuzzy arithmetic 
neural networks and fuzzy logic neural networks. The former operate on 
fuzzy numbers using fuzzy arithmetic, while the latter operate on fuzzy 
sets of linguistic terms using fuzzy logic. It is also explained in [343] that 
most fuzzy neural networks introduced so far have employed fuzzy logic 
operations to handle fuzzy sets. Applying the term fuzzy neural network to 
various types of networks incorporating fuzziness can thus be compared to 
the commonly use of the term fuzzy logic for all techniques based on the 
theory of fuzzy sets, sometimes called "fuzzy logic in the wide sense". 

3.3 Fuzzy Inference Neural Networks 

Let us consider the fuzzy logic system described in Section 2.3.1, with the 
singleton fuzzifier, defined by formula (2.97), and the discrete form of the 
defuzzifier, given by Equation (2.107). The inference of the fuzzy system, 
performed by the single rule (2.94), for k = 1, ... ,N, is expressed by 
formula (2.122). From Equations (2.107), (2.110), (2.115), and (2.122), we 
obtain the following description of the fuzzy system 

(3.32) 

where 

for the Mamdani approach 
(3.33) 

for the logical approach 

Equation (4.2) represents the general mathematical description of the 
fuzzy system based on the Mamdani approach. 

Formula (2.122) expresses the equality /-LAi-+Bi (x, y) = /-LBi (y). Hence, 
it is easy to represent the fuzzy system described by Equations (3.32) and 
(3.33) in the form of the multi-layer network illustrated in Fig. 3.10. The 
first layer contains elements which realize the membership functions of 
fuzzy sets Ai = A{ x ... x A~ , for j = 1, ... ,N. These elements are 
denoted by A I , A 2 , ... ,An, where n is the number of inputs. This layer 
is called the antecedent layer, since it refers to the antecedent part of the 
IF-THEN rules (2.94) or (2.108). The second layer consists of the elements 

which calculate the values of the membership functions of fuzzy sets Bi , 
for j = 1, ... ,N, inferred by the inference process (see Sections 2.3.3 and 
2.3.4), in the points x and ll, for k = 1, ... ,N. These elements corre
spond to fuzzy relations that represent the fuzzy IF-THEN rules. They are 
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denoted in Fig. 3.10 by Rj (x, yk). This layer is called the inference layer. 
The outputs of this layer are membership values /LIP (yk). The third layer 
is composed of the elements which realize the S-norm or T-norm operator, 
according to formula (3.33) . This layer performs the aggregation operation 
(see Section 2.3.2) , and is therefore called the aggregation layer. The last 
layer contains only three elements: two adders and one element which carry 
out the division operation. This layer, called the defuzzification layer, per
forms the defuzzification (2.107). This layer can be presented in the form 
of two layers: the adder layer, which is the classical neuron layer and the 
division layer (see Sections 4 and 5). 

x, 

ante.c.edent 
layer 

inference layer aggregation 
layer 

defulzilicaf.ion layer 

FIGURE 3.10. General form of fuzzy inference neural network 

y 

Modern neuro-fuzzy systems are very often represented in the form of 
multi-layer feed-forward connectionist networks. Some of them can be 
treated as a special case of the architecture portrayed in Fig. 3.10. Neuro
fuzzy systems are popularly viewed as fuzzy systems trained by a l earning 
algorithm that usually comes from neural network theory [347]. The idea of 
the back-propagation algorithm (described in Section 3.1.3) is frequently 
applied in order to train neuro-fuzzy systems. However, it should be noted 
that the gradient methods developed in order to train the systems of this 
kind (Section 6.1), as a matter offact, can be traced directly to the steepest 
descent optimization method [98], not to neural network learning. There
fore, what actually makes these systems neuro-fuzzy is their representation 
in the form of connectionist, multi-layer, architectures, similar to that of 
neural networks. These architectures allow analogous learning procedures 
to be incorporated. The importance of the architectures from the learn-
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ing point of view is explained in Section 6.1.3, where special software for 
architecture-based learning is described. Of course, neuro-fuzzy systems are 
also created by including other methods of learning neural networks than 
the back-propagation algorithm. The reinforcement learning [25], which is 
explained briefly in Section 3.1.5, is one example. 

Having the connectionist architectures of neuro-fuzzy systems, we can 
visualize the data flow through the systems. It is thus very convenient to 
analyze and compare different types of these systems. Besides, if a fuzzy 
system is represented in the form of a connectionist network, it is easier 
to adopt some (learning) tools developed and used for neural networks. 
Similarly to the reinforcement learning mentioned above, we can apply, for 
instance, competitive learning strategies (Section 3.1.6), in order to train 
neuro-fuzzy systems. 
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4 
Neuro-Fuzzy Architectures 
Based on the Mamdani Approach 

The fuzzy inference neural networks (see Section 3.3) that realize the in
ference based on the Mamdani approach are the subject of this chapter. 
Different, multi-layer, architectures of the neura-fuzzy systems are por
trayed. The systems with various fuzzifiers (singleton, non-singleton), de
fuzzifiers, and inference operations, are considered. All these systems can 
be trained, when applied to solve practical problems, similarly to neural 
networks. Learning methods of neura-fuzzy systems are presented in Chap
ter 6, including the architecture-based learning, proposed in Section 6.1.3. 
Interested readers may also be referred to [420], [434]. 

4.1 Basic Architectures 

The fuzzy systems described in Section 2.3.3 and depicted in Lemmas 1 
and 2 can be represented in the form of connectionist multi-layer architec
tures, similar to the neural networks [513]. The fuzzy logic systems given 
by Equations (2.126) and (2.127) can be easily portrayed as the networks 
illustrated in Figs. 4.1 and 4.2, respectively. 

The first layer contains elements which realize the membership functions 
fLAk (Xi), for i = 1, ... ,n, and k = 1, ... ,N. The Gaussian membership 
fun'ctions, defined by Equation (2.131), are marked in the figures. How
ever, triangular or other-shaped functions can be used. The crisp values 
Xl, ... ,xn constitute the input vector x= [Xl, ... ,xnf. The outputs of the 
first layer in both figures are membership values of the antecedent fuzzy 
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FIGURE 4.1. Basic neuro-fuzzy architecture of the Mamdani system 

sets A~ , .. . ,A~, for k = 1, ... ,N, in the crisp points Xi, for i = 1, ... ,n, 
that is f-LAk (Xi). The number of these elements is equal to n· N, where n is 
the numb~r of inputs and N is the number of fuzzy IF-THEN rules (2.94). 

The second layer, in both architectures, contains elements which realize 
the Cartesian product of the membership values f-LAk (Xi), for i = 1, ... ,n. 
There are N elements in this layer. Each of them c~rresponds to one rule 
R(k), expressed by Equation (2.94), for k = 1, . . . ,N. These elements in the 
architecture presented in Fig. 4.1 perform the min operation, while in the 
architecture shown in Fig. 4.2 they realize the product operation. Therefore, 
as explained in Section 2.3.3, the fuzzy logic systems portrayed in Figs. 4.1 
and 4.2 are called the Mamdani and Larsen systems, respectively. 

The basic neuro-fuzzy architectures illustrated in Figs.4.1 and 4.2 re
fer to Fig. 2.20. The first layer, the same in both figures, corresponds to 
Fig. 2.20 (a), which shows the membership functions in the antecedent part 
of the rules. The second layer realizes the Cartesian product of the an
tecedent fuzzy sets. This layer in Fig. 4.1 conducts the Cartesian product 
defined by the min operator and corresponds to Fig. 2.20 (b). The second 
layer in Fig.4.2 realizes the Cartesian product defined by the product 
operator and refers to Fig. 2.20 (c). 

The last two layers in each figure are defuzzification layers. They perform 
the defuzzification by the center-average method (see Section 2.3.1), based 
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FIGURE 4.2. Basic neuro-fuzzy architecture of the Larsen system 

on the fuzzy sets Bk, k = 1, . .. ,N, inferred by FITA max-min or max
product inference, respectively (see Section 2.3.3, Figs. 2.21 and 2.22). 

It is easy to notice in Figs. 2.21 and 2.22 that the antecedent matching 
degrees Tk = lL[jk (1/). On the other hand Tk is given by Equation (2.130). 
Thus, Tk, for k = 1, ... ,N, are outputs of the second layer and also inputs 
of the defuzzification layers. 

The last two layers realize the defuzzification defined by Equation (2.105), 
where 1/ is the peak point (center) of the membership function lL[jk. The 
values of Tl, for k = 1, .. . ,N, are visible in the first defuzzification layer. 
They play the role of weights of neurons in neural networks. There are two 
elements which perform addition, realizing the model of the classical neu
ron. The weights to the other adder equal one. The element of the last layer 
conducts division operation, dividing the numerator by the denominator of 
the expression (2.105), which is the same as Equation (2.129). The crisp 
value 'fl, obtained from these equations, is the output of the last layer. 

The first two layers of the architectures, illustrated in Figs. 4.1 and 4.2, 
correspond to the conjunction in the rule premises (antecedents). Therefore, 
these architectures can be viewed as examples of the three-layer architec
ture depicted in Fig. 4.3. In this case, the elements of the first layer realize 
the conjunction represented by the Cartesian product of the antecedent 
fuzzy sets. The outputs of the first layer in this figure are the same as the 
outputs of the second layer of the architectures portrayed in Figs. 4.1 and 
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4.2, that is Tk, for k = 1, ... ,N. The last two layers, the defuzzification 
layers, are the same as in the architectures shown in Figs. 4.1 and 4.2. 

Xl 

X2 

Y 

Xn 

FIGURE 4.3. Basic architecture of the Mamdani approach fuzzy systems 

The neuro-fuzzy architectures, depicted in Figs.4.1, 4.2, as well as in 
Fig. 4.3, are basic architectures of the neuro-fuzzy systems, also called fuzzy 
inference neural networks. These architectures are similar to the neural 
networks and they incorporate fuzzy inference (see Section 3.3). 

Let us assume that the membership functions realized by the elements 
of the first layer of the architecture illustrated in Fig.4.2 are Gaussian 
membership functions, given by Equation (2.131), with the same width 
values, which means that af = a k for i = 1, ... ,n. Thus, the elements of 
the first layer of the architecture shown in Fig. 4.3 perform the following 
functions (see Example 1 in Section 2.1.2) 

(4.1) 

where Ak = A~ x ... x A~, vector x= [Xl, ... ,xnf is the input vector, 

xk = [x~, ... ,x~] T is a vector of the centers of the membership functions 

f-LA~ (Xi), and 11·11 is the Euclidean norm, so Ilx - xkll2 = (x - xk( (x - xk). 
The neuro-fuzzy architecture depicted in Fig.4.3, with the elements of 

the first layer realizing the functions given by Equation (4.1), represents a 
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normalized version of the RBF neural network [341); see Section 3.1.4. In 
this case the function (4.1) is the radial basis function. 

Functional equivalence between RBF networks and fuzzy inference sys
tems is shown in [228). As mentioned in Section 3.1.4, RBF neural networks 
are universal approximators. It has also been proven that certain types 
of fuzzy systems are universal approximators [274), [512), [77). The latter 
reference item refers to special kinds of fuzzy controllers. Moreover, fuzzy 
systems as universal approximators are studied, e.g. in [78), [270), [5). 

4.2 General Form of the Architectures 

Let us consider the fuzzy logic system described in Section 2.3.1, with the 
singleton fuzzifier, defined by formula (2.97), and the discrete form of the 
defuzzifier, given by Equation (2.107). The inference of the fuzzy system, 
performed by the single rule (2.94), for k = 1, ... ,N, is expressed by 
formula (2.122). From Equations (2.107), (2.110), and (2.122), we obtain 
the following description of the fuzzy system 

N _k N --k 
_ I:k=l Y j~//'Ai_Bi (x, Y ) 
y= (4.2) 

Equation (4.2) represents the general mathematical description of the 
fuzzy system based on Mamdani approach. It is a special case of for
mula (3.32). 

The fuzzy system described by Equation (4.2) corresponds to the neuro
fuzzy architecture illustrated in Fig.3.1O, where the elements of the in
ference layer realize the membership function 

-i (y) = { min {/lAi (x) ,/lBi (yn 
/lB /lAi (x) /lBi (y) 

for the Mamdani rule 
for the Larsen rule 

(4.3) 

and the elements of the aggregation layer perform the S-norm operator. 
The Mamdani rule in Equation (4.3) means the min operation as the 

fuzzy relation (2.120), while the Larsen rule signifies the product operation 
as the fuzzy relation Aj ~ Bj, for j = 1, ... ,N. This network represents a 
general form of the neuro-fuzzy architecture of the fuzzy system based on 
Mamdani's approach. 

Note that the S-norm in Equation (4.2) can be expressed as follows 
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We usually assume that the fuzzy sets Bk, for k = 1,· . .. , N, are normal 
fuzzy sets (see Definition 6). In this case the centers of the membership 
functions of these fuzzy sets fulfil the following condition 

ItBk (1/) = 1 

as a result of Equation (2.106). 
From formulas (2.122), (4.3), and (4.5) Equation (4.4) becomes 

(4.5) 

j~lltAj--+Bj (x,'fl) = S (ltAk (x), j~lltAj--+Bj (X''fl)) (4.6) 
j# 

If the following condition is satisfied 

(4.7) 

then from Equations (4.6), (2.122), (4.3), (4.7), and from the first boundary 
condition of the S-norm (see Definition 18) we will conclude that 

(4.8) 

Note that the same conclusion, given by Equation (4.8), can be deduced 
if 

Vj=l=k (4.9) 

Figure 4.4 illustrates an example of non-overlapping consequent fuzzy sets 
(NOCFS). If the membership functions of the consequent fuzzy sets Bk, 
for k = 1, ... , N, are adjacent (as the figure shows, for k = 4) or disjunc
tive, then assumption (4.9) is fulfilled for Gaussian membership functions 
and assumption (4.7) is satisfied for triangular membership functions. The 
centers 'fl of membership functions of the fuzzy sets Bk, for k = 1, ... ,4, 
are marked in the figure. The singleton consequent fuzzy sets are a special 
case of NOCFS. They satisfy condition (4.7). 

If assumption (4.7) or (4.9) is fulfilled, then the fuzzy system which refers 
to NOCFS is described by the following formula 

"N -k (-) _ L...-k-l y ItAk X 
y= N 

Lk=l ItAk (x) 
(4.10) 

obtained from Equations (4.2) and (4.8). 
If the min operation is chosen as the Cartesian product A~ x ... x A~, 

that is It Ak (x) = min (It A~ (Xl) , ... ,It A~ (xn )), then formula (4.10) be

comes Equation (2.126) and the architecture of the system described by 
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f.l B'(Y) .'. B2 .... B3 , B4 , \ 
I \ , \ 

I \ I 
\ 

I \ . I , 
" 5'2 5'3 5'4 y 

FIGURE 4.4. Example of non-overlapping consequent fuzzy sets 

this formula is illustrated in Fig.4.1. Similarly, if the Cartesian product 
A~ x ... x A~ is realized by the product operation, that is JLAk (x) = 
JLAk (Xl)··· JLAk (xn ), then formula (4.10) becomes Equation (2.127) and 

1 n 
the architecture of the system represented by this formula is portrayed in 
Fig. 4.2. The architecture depicted in Fig. 4.3 corresponds directly to the 
system description (4.10). 

Figure 4.5 presents the overlapping consequent fuzzy sets (OCFS)i the 
example for Gaussian membership functions and k = 4. A similar illus
tration can be shown for triangular or other-shaped membership functions 
of the fuzzy sets Bk in the consequent part of the IF-THEN rules, for 
k = 1, ... ,N. The centers fl of membership functions of the fuzzy sets 
Bk, for k = 1, ... ,4, are marked in the figure. The OCFS usually fulfil 
neither condition (4.7) nor (4.9). They constitute a more general case of 
the consequent fuzzy sets, so the NOCFS systems can be treated as special 
cases of the OCFS systems. 

BI B2 _ ~3 B4 
,LIBk(Y) ... - .... , .. ,. 

" . , ., > . " . . .... , , , 
'" , .... '.,. .. .... ,. . . ... 

yl y2 y3 y4 

FIGURE 4.5. Example of overlapping consequent fuzzy sets 

Let us denote 

Pj,k = JLBj (fl) 

From Equations (4.6), (2.122), (4.3), and (4.11) we conclude that 

.S JLAj~Bj (x, fl) = S (JLAk (x) , .S min (JLAj (x) ,pj'k)) 
3=1 3=1 

j# 

.... 
Y 

(4.11) 

(4.12) 
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for the Mamdani rule, and 

(4.13) 

for the Larsen rule. 
From formulas (4.2) and (4.12) we obtain the following mathematical 

description of the OCFS system based on the Mamdani rule 

(4.14) 

Analogously, from formulas (4.2) and (4.13) we have a description of the 
OCFS system based on the Larsen rule 

(4.15) 

Note that if Pj,k = 0 or Pj,k ~ 0, which means that conditions (4.7) 
or (4.9) are satisfied, then formulas (4.14) and (4.15) take the form of 
Equation (4.10). 

Figure 4.6 illustrates the architecture of the system described by Equa
tion (4.14) and Fig.4.7 shows the architecture of the system represented 
by formula (4.15). 

It was concluded in Section 2.3.3, looking at Fig. 2.23, that the CA de
fuzzification, defined by Equation (2.105), gives the same result as the 
special case of the COA defuzzification, expressed by formula (2.107). It 
is obvious that both defuzzification methods determine the same crisp 
output if the membership functions of the consequent fuzzy sets Bk, for 
k = 1, ... ,N, are non-overlapping. It is worth noticing that these member
ship functions in Fig. 2.23 are in fact overlapping. However, the following 
condition is fulfilled 

(4.16) 
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FIGURE 4.6. Architecture of OCFS system based on the Mamdani rule 

Xl 

X2 

ji 

Xn 

FIGURE 4.7. Architecture of OCFS system based on the Larsen rule 
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for k, j = 1, ... ,N. If assumption (4.16) is satisfied, then also conditions 
(4.9) and (4.7) will be fulfilled. Thus, we can weaken condition (4.7), assum
ing Equation (4.16). Both defuzzification methods will produce the same 
crisp output in the case of formula (4.6) taking the form of Equation (4.10). 
It is guaranteed by assumption (4.7) as well as (4.9). 

4.3 Systems with Inference Based on Bounded 
Product 

Two kinds of fuzzy systems based on the Mamdani approach are well known 
and commonly used in various applications: these systems which employ 
Mamdani and Larsen rules of inference. These refer to the max-min or 
max-product inference method, respectively (see Section 2.3.3). The neuro
fuzzy systems that applied the Mamdani and Larsen rules of inference have 
been presented in Sections 4.1 and 4.2. These rules of inference are based 
on min and product operators, respectively. 

The min and product operators are widely used as the T-norms because 
of their mathematical forms, which are easy to calculate. However, other 
T-norm operators can be employed, for example the bounded product (see 
Table 2.1). The inference rule is expressed by this T-norm as follows 

J.LAk--+Bk (x,y) = max ( J.LAk (x) + J.LBk (y) -1,0) (4.17) 

If assumption (4.5) is fulfilled, then from Equation (4.17) we obtain 

J.LAk--+Bk (x,yk) = J.LAk (x) (4.18) 

and from formulas (4.4), (4.18), (4.17), (4.11) we have 

.~ J.LAj--+Bj (x, yk) = S (J.LAk (x), .~ max (J.LAj (x) - pj k, 0)) 
3=1 3=1' 

j# 

(4.19) 

where 

Pj,k = 1 - pj,k (4.20) 

From Equations (4.2) and (4.19) the mathematical description of the 
system based on the bounded product rule of inference has the following 
form 

(4.21) 
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If condition (4.7) or (4.9) is satisfied, it is easy to conclude, that Equa
tion (4.21) takes the form of formula (4.10) . Thus, in this case, a fuzzy 
system based on the bounded product rule of inference is described by the 
same mathematical formula as the systems based on the Mamdani (min) 
or Larsen (product) rule of inference. The multi-layer architecture of this 
system is illustrated in Fig. 4.3. If the min operation is chosen as the Carte
sian product to realize the membership values J.LAk (x), for k = 1, ... ,N, in 
Equation (4.10), then the neuro-fuzzy architecture has the form presented 
in Fig. 4.1. If the product operation is chosen as the Cartesian product, 
then the architecture of the system is as depicted in Fig. 4.2. 

The architecture of the system described by Equation (4.21) is presented 
in Fig. 4.8. 

Xl 

X2 

Y 

X. 

FIGURE 4.8. Architecture of OCFS system based on the bounded product rule 

It is very simple to portray the inference process, based on the bounded 
product rule, in a similar way to that shown in Fig. 2.23, in Section 2.3.3. 
The membership functions of the fuzzy sets Bk, inferred by use of the Mam
dani rule, in Fig. 2.23 are "clipped" versions of the membership functions 
of the consequent fuzzy sets Bk. The membership functions of fuzzy sets 
-k 
B , inferred by use of the Larsen rule, are "scaled" forms of the member-
ship functions of the consequent fuzzy sets Bk, for k = 1, ... ,N. In the 
case of the bounded product inference rule, the membership functions of 
the inferred fuzzy sets Bk are similar in shape to the "scaled" membership 
functions. In fact, however, they are shifted down, so the maximal values of 
the membership functions Bk are equal to the antecedent matching degrees 
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Tk, and cut from the bottom to obtain membership values greater or equal 
to zero. This is illustrated in [437]. 

Other T-norm operators can also be proposed to perform inference of 
the Mamdani approach type. However, as we have seen on the example of 
the bounded product rule, in the case of NOCFS different T-norm opera
tors lead to the same neuro-fuzzy architectures. In the case of OCFS the 
architectures for other T-norm operators can be more complicated. 

4.4 Simplified Architectures 

Now let us consider the Mamdani and Larsen systems (see Section 2.3.3, 
Lemmas 1 and 2). The neuro-fuzzy architectures of these systems are pre
sented in Figs.4.1 and 4.2, respectively, and their general form, for the 
NOCFS, is depicted in Fig. 4.3. The first layer of the architectures shown 
in Figs.4.1 and 4.2 is the same, and it contains elements which realize 
the membership functions J.1-A~ (Xi) of fuzzy sets Af which are antecedent 
fuzzy sets in the rule base (2:94), for i = 1, ... , n, and k = 1, ... , N. It 
is easy to notice that there are n . N elements in the first layer. In this 
case, each linguistic variable, Xi, for i = 1, ... , n, can take linguistic values 
corresponding to N fuzzy sets Af, for k = 1, ... , N. These fuzzy sets are 
viewed as labels of the linguistic values, for example small, medium, large 
(three labels), or very small, small, medium, large, very large (five labels); 
see Section 2.2.4. The number of linguistic labels for each linguistic variable 
can thus be set in such a way that it may be different for each Xi and less 
than the number of rules, N. This results, of course, in a smaller number 
of elements in the first layer of the neuro-fuzzy architectures. 

Let us assume that there are Ni different linguistic labels, correspond
ing to fuzzy sets denoted as Ai,hi' for each linguistic variable, Xi, where 
i = 1, ... , n, and hi E {I, ... , Ni }, and Ni :::; N. In this case, the first 
layer of the neuro-fuzzy architectures contains elements performing the 
membership functions J.1-Ai ,hi (Xi), and the number of these elements is 

The rule base with fuzzy sets Ai,hi , in the antecedent part of the rules, 
has the following form 

R(k) : IF Xl is Al,h1 AND X2 is A2,h2 AND 

THEN y is Bk 

AND Xn is An,hn 

(4.22) 

where each rule number, k, is associated with a sequence hl h2 ··· hn' in 
which hl E {I, ... ,Nl }, h2 E {I, ... ,N2}, ... , hn E {I, ... ,Nn }; and 
k=I, ... ,N. 
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It is obvious that the same fuzzy sets Ai,hi can be included to antecedent 
parts of many rules, but the values of the sequence h Ih2 ··· hn must be 
different in each rule, which mean different combinations of the fuzzy sets. 

Figure 4.9 illustrates the simplified neuro-fuzzy architecture that corre
sponds to the rule base (4.22). The first layer is composed of the elements 
which perform the membership functions !1Ai,hi (Xi) of fuzzy sets Ai,hi given 
input values Xi, for i = 1, ... ,n. Since a fuzzy set is completely determined 
by its membership function (Section 2), the notation of fuzzy sets Ai,hi is 
used in the figure instead of !1Ai,hi' understanding that the elements realize 
the membership functions. The second layer consists of the elements that 
perform the Cartesian product operator, which is the minimum or product 
(see Definition 25). The number of these elements is equal to the number 
of rules, N. 

It is easy to notice that if NI = N2 = ... = N n = N, then the rule 
base (4.22) takes the form (2.94) and the architecture shown in Fig. 4.9 
becomes the same as the basic architectures presented in Figs. 4.1 and 4.2. 
In this case, the first layer of each architecture contains the elements that 
perform membership functions A~, for i = 1, ... ,n, and k = 1, ... ,N. 
Thus, A~ = AI,hu A~ = A 2,h2,"" A~ = An,hn , for k = 1, ... ,N. 

If the assumption Ai i- AT i- ... i- Af", for i = 1, ... ,n, is not satisfied, 
the basic architecture can be reduced to the simplified one, because instead 
of using several elements, in the first layer, realizing the same membership 
function, only one can be applied and connected to several elements in the 
second layer. In the basic architecture, each element in the first layer is 
connected with only one element in the second layer. 

In the simplified architecture depicted in Fig. 4.9 an element of the first 
layer can be connected to more than one element of the second layer. The 
connections correspond to the IF-THEN rules (4.22). The maximal number 
of rules that can be created in this way, denoted as Nma;x, is 

n 

N max = II Ni 
i=1 

(4.23) 

In situations when N = Nma;x, the following expression [420], [366] can 
be used to determine the rule number, k, based on the sequence h Ih2 ··· hn 

(4.24) 

where No = 1. 
Let us notice that, in this case, from formula (4.24), if hI = h2 = ... = 

hn = 1, we obtain k = 1, and if hI = h2 = ... = h n = Nma;x, then 
k = N max. It is worth emphasizing that if we presented the simplified 
architecture with the maximal number of rules, given by Equation (4.23), 
in the form of the basic architectures, the first layer would contain n· N max 
elements, which is much more than NI + N2 + ... + N n. 
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FIGURE 4.9. A simpified architecture of neuro-fuzzy systems 

However, the rule base of a neuro-fuzzy system does not usually include 
the maximal number of rules. Initially, the architecture for Nmax rules can 
be created, but later a pruning procedure may be applied in order to reduce 
the rule base, so 

n 

(4.25) 

Equation (4.24) may be applied in order to assign a number to each rule 
during the pruning procedure. Moreover, this is helpful for a mathematical 
description of neuro-fuzzy systems represented by the simplified architec
tures. In particular, it is useful for determining the formulas which consti
tute learning algorithms for these systems. These kind of learning proce
dures, similar to the back-propagation method, are depicted in [420]. How
ever, this kind of learning algorithm can be realized based on the system's 
architecture, as mentioned in Section 3.3, so it is not always necessary to 
employ these mathematical formulas . 

The mathematical description of the system with the rule base (4.22) is 
given by the following equations 

(4.26) 
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or 

y _ L~=l yk min {JLA1.h1 (Xl) , ... , JLAn•hn (Xn)} 

- L~=l min {JLA1'h1 (Xl) , ... , JLAn.hn (Xn)} 
(4.27) 

for the product or minimum as the Cartesian product operator, respec
tively; where k is associated with the sequence hl h2'" hn , and can be 
expressed by formula (4.24). 

It is worth mentioning that Equation (4.24) serves as an example of the 
methods that allow numbering of the rules by assigning them to sequences 
hl h2 ··· hn • It can, of course, be done in a different way. 

Each of the neuro-fuzzy architectures presented in this book can also 
be considered in a simplified version, since this is a special case of the 
basic architecture, where some of the first-layer elements realize the same 
membership functions. 

4.5 Architectures Based on Other Defuzzification 
Methods 

The neuro-fuzzy architectures described in this chapter are based on the 
center average defuzzifier. The general form of the multi-layer connectionist 
architectures, shown in Fig. 3.10, in Section 3.3, has been determined using 
the discrete form of the center-oj-area defuzzification method, also called 
the center-oj-gravity. These methods, among others, are described in Sec
tion 2.3.1. The center oj sums defuzzification applied to a specific kind of 
system is the subject of Section 4.5.1. In Section 4.5.2 a neural network is 
used as a defuzzifier. 

4.5.1 COS-Based Architectures 
The neuro-fuzzy systems presented in Figs. 4.1 and 4.2, and depicted, re
spectively, in Lemmas 1 and 2 in Section 2.3.3, were obtained using the 
center average defuzzification method (see Section 2.3.1). Applying the 
center oj sums defuzzification (COS), defined by Equation (2.103), instead 
of the center average method, we can determine the following description 
of the system [420], [427] 

"N -k k TIn (- ) L...k=l Y (j i=l JL Ak Xi 

Y = "N k TIn ('- ) 
L...k=l (j i=l JLA~ Xi , 

(4.28) 
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assuming that the rule base (2.94) is used, and Gaussian membership func
tions of fuzzy sets Bk, for k = 1, ... ,N, given by 

(4.29) 

are employed; fl and (jk denote center and width parameters, respectively, 
of these membership functions. 

System description (4.28) can easily be determined by substituting ex
pression (2.122) into Equation (2.103), which means that the singleton 
fuzzifier is applied. Then the Larsen (product) operation should be chosen 
as fuzzy relation A k ---t Bk, and the product operation as the Cartesian 
product Ak = At x ... x A~ , so 

n 

JLAk-+Bk (x,y) = JLBk (y) IIJLA~ (Xi) (4.30) 
i=l 

The functions (5.16) fulfil the following equation 

(4.31) 

and r: YJLBk (y) dy = fl (jk.,fff (4.32) 

Thus, from formulas (2.103), (2.122),4.30, and (4.31), (4.32), we obtain 
the system description expressed by Equation (4.28). 

Analogously to the lemmas 1 and 2, presented in Section 2.3.3, we can 
now formulate the following lemma: 

Lemma 4 The fuzzy logic systems with rule base (2.94), singleton fuzzi
fier (2.97), COS defuzzifier (2.103), product operation as fuzzy relation 
Ak ---t Bk, product operation as Cartesian products A~ x ... x A~, 
and Gaussian membership functions of the consequent fuzzy sets Bk, for 
k = 1, ... ,N, given by formula (5.16), are described by Equation (4.28). 

The neuro-fuzzy architecture of the system referred to in lemma 4 is 
illustrated in Fig. 4.10. It is easy to notice the difference between this system 
and that depicted in lemma 2, with the neuro-fuzzy architecture shown 
in Fig.4.2. The system based on the COS defuzzification method takes 
into account the width parameters of the consequent Gaussian membership 
functions, while its counterpart based on the center average defuzzification 
includes only the center parameters. 
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y 

FIGURE 4.10. A neuro-fuzzy architecture based on the COS defuzzification 
method 

If the consequent fuzzy sets Bk, for k = 1, ... , N, are singletons, the 
neuro-fuzzy architecture portrayed in Fig. 4.2 is, of course, sufficient. How
ever, for non-singleton consequent fuzzy sets, the architecture presented in 
Fig.4.10 contains more information about the system. 

Similar system can be considered if the membership functions of fuzzy 
sets Bk, for k = 1, . . . , N, are triangular functions defined by 

if Iy -17k l ~ sk/2 
otherwise 

(4.33) 

where 17k and sk denote the center and width parameters, respectively, 
of the triangular membership functions; see Fig. 2.1. The center is the 
one-point core of the triangular function (Definition 4) and the width is 
determined by the support (Definition 2) of this membership function. 

Lemma 5 Fuzzy logic systems with rule base (2.94), singleton Juzzi
jier (2.97), COS deJuzzijier (2.103), product operation as Juzzy relation 
Ak --t Bk, product operation as Cartesian products A~ x ... x A~, 
and triangular membership Junctions oj the consequent Juzzy sets Bk, Jor 
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k = 1, ... , N, given by formula (4.33), are described by the equation 

"N -k k nn (- ) 
L...,k=l Y S i=lI"A~ Xi 

Y = "N k nn '(- ) 
L...,k=l S i=l I" A~ Xi 

(4.34) 

This lemma has been obtained in the same way as lemma 4. In this 
case, instead of expressions (4.31) and (4.32), the following equations for 
triangular functions have been used 

and 

which are easy to determine; the first one represents the triangle's area. 
The architecture of the system depicted in lemma 5 is the same as that 

illustrated in Fig. 4.10, but with the symbols (J'k, for k = 1, ... , N, in the 
third layer, replaced by sk. 

The membership functions of antecedent fuzzy sets Af, for k = 1, ... , N, 
can be chosen as Gaussian, triangular, or other shaped functions. 

Gradient learning formulas for tuning center and width parameters of 
the systems with Gaussian and triangular (antecedent and consequent) 
membership functions are presented in [420]; see also [427]. 

4.5.2 Neural Networks as Defuzzifiers 

The defuzzification task in fuzzy systems, which transforms fuzzy outputs 
into crisp values, can be treated as a mapping from a high-dimensional 
space to a lower-dimensional space. Neural networks have the ability to 
learn this mapping if some good training samples are provided. This ap
proach, using neural networks as defuzzifiers, is applied e.g. in [475], [474], 
[290], [291], [420], [422]. In these papers, multi-layer feed-forward neu
ral networks (MLPs) are employed to perform defuzzification tasks. This 
approach utilizes the fact that single-hidden-layer MLPs are universal ap
proximators (see Section 3.1.2), so they can approximate any continuous 
function to any degree of accuracy. Some interesting properties of defuzzi
fication neural networks are presented in [474]. Other papers, cited above, 
include learning methods (usually based on back-propagation, as described 
in Section 3.1.3), as well as results of application experiments. 

Neural networks can be employed as defuzzifiers in different kinds of 
neuro-fuzzy architectures, by replacing the last layers which realize the de
fuzzification task. Figure 4.11 illustrates the architecture that corresponds 
to the neuro-fuzzy systems portrayed in Figs.4.1 and 4.2, as well as in 
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Fig. 4.10, in which the neural network plays the role of the defuzzifier. 
Analogously, we can replace these two layers by a neural network in the 
simplified architecture shown in Fig. 4.9, and in others. 

Let us notice that Figs. 4.1 and 4.2 refer to the center average defuzzifica
tion method, while the architecture depicted in Fig. 4.10 incorporates the 
center of sums defuzzifier. Other neuro-fuzzy architectures considered in 
this book have been determined based on the discrete form of the center-of
area method used for defuzzification. Neural networks can therefore replace 
various defuzzification formulas. 

The performance of the neural network defuzzifiers depends on the train
ing samples that constitute the learning sequence. The weights of the neu
ral network are tuned during a learning procedure, rather than the center 
(and width) parameters of the consequent fuzzy sets. By tuning the neural 
network weights we do not confine the information about shapes of the 
consequent membership functions only to these parameters. On the other 
hand, the weights, in contrast to the center and width parameters, have no 
physical interpretation. 

FIGURE 4.11. A neuro-fuzzy architecture with a neural network as a defuzzifier 
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As mentioned in Section 3.1.4, RBF networks are also universal approxi
mators and they are capable of accurately mimicking specified MLP neural 
networks (and vice versa). Therefore, it is possible to apply an RBF net
work as a defuzzifier, instead of an MLP. This idea is presented in [425]. 

4.6 Architectures of Systems with Non-Singleton 
Fuzzifier 

The most commonly used fuzzifier in fuzzy and neuro-fuzzy systems is the 
singleton fuzzifier, also applied in all the neuro-fuzzy architectures con
sidered in this book. The singleton fuzzifier (2.97) is very convenient from 
the computational point of view, since in this case Equation (2.96), known 
as the sup-star composition, is expressed by the very simple formula (2.122). 
However, this kind of fuzzifier may not always be applicable, for example 
in the situations when input data (or training data) are corrupted by noise 
and there is a need to account for uncertainty in the input values. An 
example of the non-singleton fuzzifier is given by Equation (2.98). Fuzzy or 
neuro-fuzzy systems with non-singleton fuzzifiers are very seldom studied 
in the literature. The papers which consider this kind of fuzzifier are e.g. 
[342], [386], [420], [424], [432], [436]. 

The inference process of a fuzzy system with the rule base (2.94) is ex
pressed by the sup-star composition (2.96). Let us assume that the product 
operator is chosen as the T-norm in this equation. Moreover, the fuzzy re
lation A k -t Bk is Larsen's (product) type, and the Cartesian products 
Ak = A~ x ... x A~ and Ak = Ai x ... x A~ are defined by the product 
(according to Definition 25). In this case, formula (2.96) takes the following 
form 

n 

f.brjk (Y) = JLBk (y) II 'Yf (4.35) 
i=l 

where 

(4.36) 

for i = 1, ... ,n, and k = 1, ... ,N. 
Let us also assume that membership functions of the fuzzy sets A~, ... ,A~ 

and Ai, ... ,A~ are Gaussian functions 

(4.37) 
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and 

(4.38) 

respectively. 
By maximizing the function J-lN (Xi) J-lAk (Xi), in formula (4.36), using 

Equations (4.37) and (4.38), we fiu'd that the point x7, which corresponds 
to the maximal value of this function, is expressed as follows 

(4.39) 

Substituting x7, given by Equation (4.39), into J-l A; (Xi) J-l A7 (Xi) we can 
easily obtain 1'7, defined by Equation (4.36), in the form 

( 4.40) 

where 

(4.41 ) 

Now we can substitute 1'f, expressed by Equation (4.40), into formula 
(4.35) and then determine a description of a fuzzy system based on a specific 
defuzzification method, for example the center average (2.105) or the center 
of sums (2.103). Hence, a system with the center average defuzzifier is 
described as 

( 4.42) 

and a system with the center of sums defuzzifier by 

""N -k k 
_ L....k=l Y (J Tk 
Y = ""N k 

L....k=l (J Tk 
( 4.43) 

where 

( 4.44) 

Equation (4.43) has been determined in the same way as the system 
description (4.28) in Section 4.5.1. Formula (4.42) has the same form as the 
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description of the system depicted in lemma 2, in Section 2.3.3. Thus, the 
neuro-fuzzy architectures of the systems with the non-singleton fuzzifier is 
fundamentally the same but there is a difference in the first layer. It is easy 
to notice that in the non-singleton case, elements of the first layers in both 
architectures perform Gaussian functions with different center and width 
parameters, according to formula (4.44). The architecture that corresponds 
to Equation (4.42) is presented in Fig.4.2, while the architecture of the 
system described by Equation (4.43) is illustrated in Fig. 4.10, where the 
Gaussian functions realized by the first layer's elements are expressed by 
formula (4.40). Note that this means that input values are centers, Xi, of 
the Gaussian membership functions /-LA'. (Xi), for i = 1, ... ,n. Of course, we 
can assume that Xi = Xi, where Xi, for'i = 1, ... ,n, are crisp input values. 
Moreover, we can also assume that the width parameters of the membership 
functions /-LA' (Xi) are the same for each i = 1, ... ,n, so ai = a. In this 
case, the deg~e of rule activation, Tk, is expressed as 

Tk = ii exp [_ (Xi =-~ xf ) 2] 
0=1 a. 

(4.45) 

where 

(4.46) 

so the only difference between the architectures for the singleton and non
singleton cases is in the width parameters of the Gaussian functions per
formed by the first layers' elements. These parameters are af for the sin-
gleton architectures and a~ given by Equation (4.46) in the non-singleton 
case. 

Gradient learning algorithms for tuning parameters of the antecedent 
and consequent membership functions are similar to their singleton coun
terparts. These formulas are presented in [420], [424]. 
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N euro-Fuzzy Architectures 
Based on the Logical Approach 

The fuzzy inference neural networks (see Section 3.3) that realize the in
ference based on the logical approach are the subject of this chapter. Firstly, 
in Section 5.1, the mathematical descriptions of the neuro-fuzzy systems 
employing different fuzzy implications are determined. Then, the connec
tionist, multi-layer, architectures, which correspond to the implication
based systems, are presented. These architectures are proposed in [366]. 
The neuro-fuzzy systems of this kind are considered in [367], [430], [433], 
and also in the papers that refer to a specific implication, e.g. [429]. In 
Section 5.4, the performance analysis of the implication-based systems is 
illustrated. The results of computer simulations with regard to examples of 
function approximation, control, and classification problems, are portrayed 
in Section 5.5. In order to train the systems, gradient, genetic, or hybrid al
gorithms can be applied. The learning methods are described in Chapter 6. 
In particular, the architecture-based learning, outlined in Section 6.1.3, is 
recommended. 

5.1 Mathematical Descriptions of 
Implication-Based Systems 

Let us consider the fuzzy logic system presented in Section 2.3.1, with 
the singleton fuzzifier defined by formula (2.97), and the discrete form 
of the defuzzifier given by Equation (2.107). The inference of the fuzzy 
system, performed by the single rule (2.94), for j = 1, ... ,N, is expressed 
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by formula (2.122). From Equations (2.107), (2.115), and (2.122), we obtain 
the following description of the fuzzy system 

(5.1) 

Equation (5.1) represents the general mathematical description of the 
fuzzy system based on the logical approach. This is a special case of for
mula (3.32). 

The T-norm in Equation (5.1) can be written as follows 

The logical implications applied to fuzzy inference are depicted in Sec
tion 2.3.4. The Kleene-Dienes, Lukasiewicz, Zadeh, Reichenbach, Goguen, 
G6del, Dubois-Prade implications are defined by Equations (2.132), (2.135), 
(2.137), (2.138), (2.145), (2.146), (2.147), respectively. These implications 
are listed in Table 2.2; see Section 2.2.2. In addition, the following implica
tions are presented in Section 2.3.4: the stochastic, Fodor, Willmott, as well 
as Sharp, and Yager fuzzy implications, given by formulas (2.139), (2.141), 
(2.142), (2.144), (2.143), respectively. 

It is easy to show that if assumption (4.5) is fulfilled, then 

(5.3) 

for the Kleene-Dienes, Lukasiewicz, Reichenbach, Goguen, G6del, Dubois
Prade, stochastic, Fodor, Sharp, Yager implications, and 

for the Zadeh and Willmott implications. 
From Equations (5.1), (5.2), (5.3), and the second boundary condition of 

the T-norm (see Definition 17), we have the expression 

N N 
L: '1/ .T J-LAi-+Bi (x,1l) 
k=1 3=1 

#k Y = -----"'--------N N 
L: .T J-LAi-+Bi (x, yk) 
k=1 3=1 

(5.5) 

i# 

for the Kleene-Dienes, Lukasiewicz, Reichenbach, Goguen, GOdel, Dubois
Prade, stochastic, Fodor, Sharp, Yager implications, and from formula (5.4), 
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the equation 

k=1 3~ 
-E fl T (max (1 - JLAk (x), JLAk (x)), .! JLAj-+Bj (x, yk)) 

- j# 
Y = (5.6) 

-E T (max (1 - JLAk (x) ,JLAk (x)) , .rr JLAj-+Bj (x, yk)) 
k=1 3=1 

j# 

for the Zadeh and Willmott implications. 
Thus, in the more general case of OCFS systems, with denotation (4.11), 

from Equations (5.5), and the corresponding formulas which define the 
fuzzy implications, we obtain the following mathematical descriptions of 
the implication-based fuzzy systems 

N N 
L: yk .T max (1 - JLAk (x) ,Pj,k) 
k=1 3=1 

j# y=-=--'----------N N (5.7) 
L: .T max (1 - JLAk (x) ,Pj,k) 
k=1 3=1 

j# 

for the Kleene-Dienes fuzzy implication, given by Equation (2.132), and 

N N 
L: yk .T min (1,1 - JLAk (x) + Pj,k) 
k=1 3=1 

j¥.k y=-----'-'-----------N N (5.8) 

L: .T min (1,1 - JLAk (x) + Pj,k) 
k=1 3=1 

j# 

for the Lukasiewicz fuzzy implication, given by Equation (2.135), and 

N N 
L: yk .T (1 - JLAk (x) + JLAk (x) Pj,k) 
k=1 3=1 

j¥.k y=-::-:----:..'-----------N N 
L: .T (1 - JLAk (x) + JLAk (x) Pj,k) 
k=1 3=1 

j# 

(5.9) 

for the Reichenbach fuzzy implication, given by Equation (2.138), and 

N N 
L: yk .T min {I, 1 - JLAk (x) + JLAk (x) pj,d 
k=1 3=1 

j# y=-::-:--.....:...:_------------
N N 

(5.10) 
L: .T min {I, 1 - JLAk (x) + JLAk (x) Pj,k} 
k=1 3=1 

j# 
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for the stochastic fuzzy implication, given by Equation (2.139), as well as 

N N (_) L: yk .T (Pj,k)i"'"Ak x 
k=1 3=1 

j# Y = -----=....:.----
N N n L: .T (Pj,k)i"'"Ak x 

k=13=1 
j# 

for the Yager fuzzy implication, given by Equation (2.143). 
In the same way, we obtain the following formula 

f: yk :r min (1, ~) 
k=1 j=1 I' Ak (x) 

j# y = -~--------N N 
L: T min (1 ~) k=1 j=1 ' I' Ak (5<) 

j# 

(5.11) 

(5.12) 

for the Goguen fuzzy implication, defined by Equation (2.145); note that 

if f-tAk (x) = 0, then min (1, 1':::(5<») = 1. 
Let us define the function 

( b) { I if a~b 
p a, = 0 if a> b (5.13) 

It is easy to show that Equation (2.146), in the form 

(_ -k) _ { 1 if f-tAk (x) ~ f-tBk (yk) 
f-tAk ..... Bk X, Y - f-tBk (yk) otherwise (5.14) 

can be replaced by the following formula 

f-tAi ..... Bi (x, yk) = min (1, f-tBi (yk) + P (f-tAi (x) ,f-tBi (yk))) (5.15) 

where p is given by Equation (5.13). Thus, from formulas (5.5), (5.15), and 
(4.11), we obtain the mathematical description of the OCFS system based 
on the G6del fuzzy implication, in the form 

N N 
L: yk .T min (l,pj,k + P (f-tAi (x) ,Pj,k)) 
k=1 3=1 

j# Y = -:-:-~'-----------N N 
L: .T min (l,pj,k + P(f-tAi (x) ,Pj,k)) 
k=1 3=1 

j# 

(5.16) 

In the similar way, we can present the formula which defines Fodor im
plication, given by Equation (2.141), as follows 

f-tAi ..... Bi (x, yk) = min(l, max (1 - f-tAi (x) ,f-tBi (yk)) 

+ P (f-tAi (x) ,f-tBi (yk)) ) (5.17) 
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where P is given by Equation (5.13). Thus, from formulas (5.5), (5.17), and 
(4.11), we determine the following description of the OCFS system based 
on the Fodor fuzzy implication 

N N 
L:: fl .T min(l,max(l- J.LAi (x) ,pj,k) + P(J.LAi (x) ,Pj,k)) 
k=l 3=1 

j#k Y = -N::-:-~N~------------------ (5.18) 

L:: .T min(l,max(l- J.LAi (x) ,pj,k) + P(J.LAi (x) ,Pj,k)) 
k=1 3=1 

j# 

Note that formula (2.144) which defines Sharp fuzzy implication, can be 
expressed directly by function (5.13), so the mathematical description ofthe 
OCFS system based on this implication, determined from formulas (5.5), 
(2.144), (5.13), and (4.11), has the form 

N N 
k"'f1 yk j'El (J.LAi (x) ,Pj,k) 

j# y = -:-:---=...;~-----
N N 

k"'f1 j'E1P (J.LAi (x) ,Pj,k) 
j# 

(5.19) 

It is also easy to show [431] that Equation (2.147), which represents the 
Dubois-Prade implication, can be expressed by 

J.LAi ..... Bi (x, yk) = min(l, 1 - J.LAi (x) + J.LBi (yk) 

+ ;5 (1 - J.LAi (x)) J.LBi (yk))) (5.20) 

where 

- { 0 if a=O o (a) = 1 otherwise (5.21) 

From formulas (5.5), (5.20), and (4.11), the description of the system 
based on this implication is given as follows 

N N ( _ ) 
k"'f1 yk j'El min 1,1 - J.LAi (x) + Pj,k + 0 «1 - J.LAi (x)) pj,k) 

_ j#k 
Y = N N _ (5.22) 

k"'f1 j'El min (1,1 - J.LAi (x) + pj,k + 0 «1 - J.LAi (x)) pj,k)) 
j# 

From formulas (5.6), (4.11), and (2.137), we conclude that the OCFS 
system based on Zadeh implication is described by Equation (3.32), where 

N 
Ak = T«I- J.LAk (x)) V J.LAk (x), j'El «1- J.LAi (x)) V (J.LAi (x) /\Pj,k))) 

j# 
(5.23) 
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In the same way, from formulas (5.6), (4.11), and (2.142), we obtain 
the mathematical description of the OCFS system based on the Willmott 
implication expressed by Equation (3.32), where 

N 
Ak = T((l- JLAk (x)) V JLAk (x), j!l ((1- JLAj (x)) V Pj,k) 

j# 

1\ (JLAk (x) V Pj,k V ((1 - JLAk (x)) I\Pj,k)) (5.24) 

and Pj,k is given by Equation (4.20). 
In the case of NOCFS, we assume that condition (4.7) is fulfilled. Thus, 

substituting Pj,k = 0 into formulas (5.7), (5.8), (5.9), (5.10), (5.11), (5.12), 
(5.16), (5.18), (5.19), (5.22), (5.23), and (5.24), we determine the descrip
tions of the NOCFS systems. In this way, we obtain the same expressions for 
systems based on the Kleene-Dienes, Lukasiewicz, Reichenbach, stochastic, 
Dubois-Prade, and Fodor implications. The following equation describes 
the systems based on these fuzzy implications 

N N 
L 1/ T (1 - JLAj (x)) 
k=l 3=1 

j# Y = --c:-:----"-'------
N N (5.25) 

L .T (1- JLA,(X)) 
k=1 3=1 

j# 

The NOCFS systems based on the Goguen, Godel, Sharp, and Yager 
implications, are represented by the formula 

where 

N N 
L yk T 8 (JLAj (x)) 
k=l 3=1 

j# Y = -::-:----=-'------
N N 
L T 8 (JLAj (x)) 

k=1 3=1 
j# 

8(a)={ 1 ~f a=O o If a>O 

(5.26) 

(5.27) 

It is easy to notice that functions c; and 8, defined by Equations (5.21) 
and (5.27), respectively, satisfy the following relation 

8=1-8 (5.28) 
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The NOCFS systems based on Zadeh or Wilhnott fuzzy implication are 
described by the following expression 

It should be noted that the NOCFS systems are represented by Equa
tions (5.25), (5.26), (5.29) if condition (4.7). Unlike in the case of the Mam
dani approach (see Section 4.2), where this assumption can be weakened, 
i.e. replaced by formula (4.9) or (4.16), this is not generally possible for 
systems based on logical approach. Although assumption (4.9) leads to the 
same description of a system which employs the Kleene-Dienes implica
tion, it will be different, in this case, for example, for the Lukasiewicz fuzzy 
implication. 

The connectionist, multi-layer architectures of the NOCFS and OCFS 
systems will be depicted in the next sections. The mathematical formulas 
which describe the systems will be used to build the architectures. 

5.2 NOCFS Architectures 

The NOCFS fuzzy systems fulfil assumption (4.7). Examples of non-over
lapping consequent fuzzy sets are shown in Fig. 4.4. Three mathematical 
formulas which describe the NOCFS implication-based systems were deter
mined in Section 5.1. Formula (5.25) represents fuzzy systems based on the 
Kleene-Dienes, Lukasiewicz, Reichenbach, stochastic, Dubois-Prade, and 
Fodor implications. Fuzzy systems based on the Goguen, GOdel, Sharp, 
and Yager implications were described by Equation (5.26). The mathe
matical description of the systems based on the Zadeh or Willmott fuzzy 
implication was expressed by formula (5.29). Each of these three equations 
is a special case offormula (3.32), where 

j .fT (1 - ILA;{X)) 
3=1 

\ TN (--k) j#k 
Ak = '_lILA3-+B; x, Y = N 

3- T 6 (ILA; (x)) 
j=l 
j# 

for the Kleene-Dienes 
group 

for the Goguen group 

(5.30) 
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and 

Ak = T ((1 - f-LAk (x)) V f-LAk (x), /!1 (1 - f-LA; (X))) for the Zadeh group 

j¥.k 

(5.31) 

where 8 is given by Equation (5.27). 
Thus, these systems can generally be represented in the form of a con

nectionist, multi-layer network, similar to that illustrated in Fig. 3.10, in 
Section 3.3, as well as to the architectures depicted in Section 4.2. The 
neuro-fuzzy architectures which correspond to formulas (5.25), (5.26), and 
(5.29) are shown in Figs.5.1, 5.2, 5.3, respectively. We will refer to the 
systems based on the Kleene-Dienes, Goguen, and Zadeh group of im
plications, respectively. The first group consists of those systems which 
employ the Kleene-Dienes, Lukasiewicz, Reichenbach, stochastic, Dubois
Prade, and Fodor implications, as well as others which are described by 
Equation (5.25). The Goguen group of implications refers to the group of 
Goguen, GOdel, Sharp, Yager, as well as other implications that lead to the 
same mathematical description of the fuzzy systems expressed by formula 
(5.26). The latter group corresponds to the systems described by Equa
tion (5.29), i.e. the systems based on the Zadeh and Willmott implications, 
as well as others with the same mathematical description. Hence, in the 
case of NOCFS, the implications used in neuro-fuzzy systems can be clas
sified from the point of view of the mathematical formulas which describe 
the systems. Each of these groups of systems is represented by a different 
neuro-fuzzy architecture, portrayed in Figs. 5.1, 5.2, 5.3, respectively. 

We should note that the mathematical descriptions of the NOCFS sys
tems based on the Kleene-Dienes and Zadeh group of implications, given by 
Equations (5.25), and (5.29), respectively, are actually very similar. How
ever, they are different from the description of the systems based on the 
Goguen group of implications, expressed by formula (5.26). It is easy to 
see that the architectures of the systems based on the Kleene-Dienes and 
Zadeh group of implications, illustrated in Figs. 5.1 and 5.3, respectively, 
are very similar. The latter only differs from the former with regard to the 
third layer, composed of elements performing the max operation. This layer 
is included in the architecture of the systems based on the Zadeh group of 
implications, while it does not occur in the architecture of the neuro-fuzzy 
systems based on the Kleene-Dienes group of implications. Thus, it seems 
that the performance of the systems based on the Zadeh and Kleene-Dienes 
group of implications may be similar but can be different from the perfor
mance of the systems based on the Goguen group of implications. This will 
be illustrated in Section 5.4. 



www.manaraa.com

5.2 NOCFS Architectures 135 
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FIGURE 5.1. Neura-fuzzy architecture of the NOCFS system based on the 
Kleene-Dienes group of implications 

FIGURE 5.2. Neuro-fuzzy architecture of the NOCFS system based on the 
Goguen group of implications 
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5.3 OCFS Architectures 

The OCFS fuzzy systems do not fulfil assumption (4.7). Examples of over
lapping consequent fuzzy sets are shown in Fig. 4.5. The mathematical for
mulas which describe the OCFS implication-based systems were determined 
in Section 5.1. Similarly to the NOCFS systems, these formulas are also in 
the form of Equation (3.32). Thus, each of them corresponds to the con
nectionist, multi-layer, network which can be treated as a special case of 
the architecture depicted in Fig. 3.10 in Section 3.3. It should be empha
sized that the mathematical descriptions of the OCFS systems, as well as 
the corresponding architectures, are more general forms of their NOCFS 
counterparts. Each of the OCFS implication-based systems portrayed in 
Section 5.1 is represented by a different architecture, while the NOCFS ar
chitectures illustrated in Section 5.2 are the same for the particular groups 
of implications. 

The OCFS architectures are shown in Figs. 5.4 - 5.14. The neuro-fuzzy 
architectures of OCFS systems based on the Kleene-Dienes, Lukasiewicz, 
stochastic, Dubois-Prade, Fodor implications are illustrated in Figs. 5.4, 
5.5, 5.6, 5.7, 5.8, respectively. They belong to the group of neuro-fuzzy 
systems which employ the Kleene-Dienes group of implications (see Sec
tion 5.2). The neuro-fuzzy architectures of the OCFS systems based on the 
Goguen, Godel, Sharp, and Yager implications are portrayed in Figs. 5.9, 
5.10, 5.11, 5.12, respectively. These constitute the group of neuro-fuzzy 
systems which apply the Goguen group of implications. The neuro-fuzzy 
architectures of the OCFS systems based on the Zadeh and Willmott im
plications are shown in Figs. 5.13, 5.14, respectively. 

It is easy to notice that the OCFS architectures reduce to their NOCFS 
counterparts if pj,k = o. It is obvious, since the mathematical descriptions 
of the NOCFS have been obtained in Section 5.1 as the special cases of the 
formulas describing the OCFS systems. 

The OCFS architectures contain more elements than the corresponding 
NOCFS architectures. Therefore, the neuro-fuzzy systems represented by 
the latter are easier to train. However, the former cannot be applied if the 
assumption (4.7) or (4.9) is not satisfied. 

It can be difficult to determine the learning algorithms appropriate for 
each of the OCFS neuro-fuzzy systems, especially the iterative formulas of 
the gradient methods. The architecture-based learning approach, presented 
in Section 6.1.3, in Chapter 6, is thus very useful. This kind of learning have 
been employed in the computer simulations portrayed in Section 5.5. 

In addition, a competetive learning method can be applied to the NOCFS 
and OCFS neuro-fuzzy systems, as well as other algorithms described in 
Chapter 6, especially a hybrid approach. 
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FIGURE 5.3. Neuro-fuzzy architecture of the NOCFS system based on the Zadeh 
group of implications 

FIGURE 5.4. Neuro-fuzzy architecture of the OCFS system based on the 
Kleene-Dienes implication 
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FIGURE 5.5. Neuro-fuzzy architecture of the OCFS system based on the 
Lukasiewicz implication 

FIGURE 5.6. Neuro-fuzzy architecture of the OCFS system based on stochastic 
implication 
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FIGURE 5.7. Neuro-fuzzy architecture of the OCFS system based on the 
Dubois-Prade implication 
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1;>0... 

FIGURE 5.8. Neuro-fuzzy architecture of the OCFS system based on the Fodor 
implication 
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FIGURE 5.9. Neuro-fuzzy architecture of the OCFS system based on the Goguen 
implication 

FIGURE 5.10. Neuro-fuzzy architecture of the OCFS system based on the Godel 
implication 
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FIGURE 5.11. Neuro-fuzzy architecture of the OCFS system based on the Sharp 
implication 

FIGURE 5.12. Neuro-fuzzy architecture of the OCFS system based on the Yager 
implication 
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I;;:.... 

FIGURE 5.13. Neuro-fuzzy architecture of the OCFS system based on the Zadeh 
implication 
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I;>, 

FIGURE 5.14. Neuro-fuzzy architecture of the OCFS system based on the Will
mott implication 
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5.4 Performance Analysis 

In order to analyze the performance of the neuro-fuzzy systems presented 
in this chapter as well as in Sections 4.1, 4.2, 4.3, let us consider a system 
with the following rule base 

R(k) : IF x is Ak THEN y is Bk (5.32) 

where x E X c R, and y EYe R, are linguistic variables corresponding to 
the input and output of the system, and k = 1, ... , N. Assume that N = 4. 
Formula (5.32) is a special case of the rule base (2.94) and (2.108). This 
means that we have a single-input, single-output (SISO) system, with 4 
rules in the rule base. The crisp input and crisp output are denoted by x 
and y, respectively. 

Each neuro-fuzzy architecture of the systems under consideration there
fore contains 4 elements in the first layer. These elements realize the mem
bership functions fLAk (x) of the fuzzy sets A k, for k = 1, ... , 4. Gaussian or 
triangular functions are usually chosen; see Fig. 2.1. The first layer is called 
the antecedent layer in Fig. 3.10. The aggregation layer also contains 4 
elements which realize the S-norm or T-norm operator, depending whether 
the Mamdani or logical approach, respectively, is used (Chapter 4 or 5). 

In order to compare the performance of these systems, we analyze the 
outputs of the aggregation layer, fLB' (yk), of each neuro-fuzzy architecture 
and outputs of the systems, y, as a function of the input x, for the same 
inputs and the same membership functions fLAk (x) and fLBk (y); k = 1, ... ,4. 

Figures 5.15 and 5.16 show the Gaussian antecedent fuzzy sets and Gaus
sian consequent fuzzy sets (the OCFS case), respectively, i.e. the member
ship functions fLAk (x) and fLBk (y), for k = 1, ... ,4, used to illustrate the 
system performance. Different types of lines (solid, dotted, dotted-dashed, 
and dashed) correspond to the four individual rules in the rule base (5.32). 
The case of the NOCFS need not be portrayed, since only the centers of 
membership functions fLBk (y), for k = 1, ... ,4, are important, and there 
are the same as in Fig. 5.16. 

. . 
, 

. , .. 
x 

FIGURE 5.15. Gaussian antecedent fuzzy sets 

Instead of the Gaussian antecedent fuzzy sets presented in Fig. 5.15, we 
can employ triangular functions, in the form shown in Fig. 5.17. Note that 
all the values of the Gaussian membership functions are greater than zero, 
while the triangular membership functions can take values equal to zero. 
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FIGURE 5.16. Gaussian consequent fuzzy sets (OCFS) 
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FIGURE 5.17. Triangular antecedent fuzzy sets 

Outputs of the antecedent layer in the neuro-fuzzy architectures, ex
pressed as functions of inputs X, are in the form depicted in Figs. 5.15 and 
5.17, respectively, where x is replaced by x. In this way, four functions, 
/-LAk (x), for k = 1, ... ,4, corresponding to the output of each element of 
the antecedent layer, are portrayed in one figure (with the same coordi
nate axis). Analogously, outputs of the aggregation layer as functions of 
inputs x, can be illustrated, using the same types of lines, i.e. solid, dot
ted, dotted-dashed, and dashed, which are associated with k = 1,2,3,4, 
respectively. 

Comparing the general architecture shown in Fig. 3.10 with the NOCFS 
Mamdani approach system presented in Fig. 4.3, we see that the outputs of 
the aggregation layer in the latter architecture are the same as the outputs 
of the antecedent layer. Thus the membership values /-LB' (17k ), as functions 
of x, have the same form as /-LAk (x); see also Equation (4.8). The graphs of 
these functions, for the Gaussian antecedent fuzzy sets depicted in Fig. 5.15, 
are shown in Fig. 5.18, which also portrays the output 17 as a function of 
the input x. The output of the system is the output of the defuzzification 
layer. Thus, Fig. 5.18 exhibits the performance of the NOCFS neuro-fuzzy 
systems based on the Mamdani approach. 

We can illustrate the performance of the logical approach systems in a 
similar way. Figure 5.19 shows the analogous graphs for the NOCFS neuro
fuzzy system based on the Kleene-Dienes group of implications, presented 
in Fig. 5.1. In this case, the membership values /-LB' (17k ), as a function of 
x, do not depend on the values of /-LAk (x) but on /-LAi (x) for j I:- k; see 
Equation (5.30). It is interesting to note that the values of x with small 
antecedent matching degrees (small values of the rule activation degrees), 
for all rules, i.e. for k = 1, ... ,4, imply output values 17 close to the arith
metical average of the centers of the consequent membership functions, fl. 
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The explanation to Equation (5.33) concerning the next neuro-fuzzy system 
described in this section, also refers to this conclusion. 

The graphs that portray the performance of NOCFS systems based on 
the Zadeh group of implications, depicted in Fig. 5.3, are shown in Fig. 5.20. 
In this case, the values of JLB' (yk) , as a function of x, depend on the values 
of each JLAk (x) for k = 1, ... ,4; see Equation (5.31). Thus, these systems 
behave similarly to the NOCFS neuro-fuzzy system based on the Kleene
Dienes group of implications. However, the additional influence of those 
values of JLAk (x) which are taken into account in the Mamdani approach 
systems, is observed. Normal antecedent fuzzy sets (see Definition 6) are 
used in Fig. 5.15, so we can easily notice that for the points of x which 
satisfy JLAk (x) < 0.5, the functions JLB' (yk), for k = 1, ... ,4, in Fig. 5.20 
take the same values. From Equation (2.107), which represents the de
fuzzification method incorporated into the neuro-fuzzy architectures (the 
defuzzification layer in Fig. 3.10), we conclude that the output values, y, 
corresponding to these input points, x, is equal to the arithmetic average 
of'il, for k = 1, ... ,4, that is 

1 N - "'-k y=-~y 

N i=l 

(5.33) 

for N = 4. This constant value of the output y is clearly visible for some 
intervals of the input values x, at the beginning, two middle parts, and at 
the end of the graph depicted in Fig. 5.20. For the same values of x, the 
output values y of the previous system (based on the Kleene-Dienes group 
of implications) are close to the arithmetical average of yk, expressed by 
Equation (5.33). The values of y that correspond to the input values x 
with the highest rule activation degrees are the same for both neuro-fuzzy 
systems (those based on the Kleene-Dienes as well as the Zadeh group of 
implications). Note that these input values also give the same output values 
for the NOCFS system based on the Mamdani approach (Fig. 5.18). 

In order to illustrate the performance of the NOCFS neuro-fuzzy sys
tem based on the Goguen group of implications, presented in Fig. 5.2, the 
triangular antecedent fuzzy sets portrayed in Fig. 5.17 have been used in
stead of the Gaussian ones. This system is described by Equation (5.26). 
As in the case of systems based on the Kleene-Dienes group of implications, 
the values of JLB' (yk), as a function of x, do not depend on JLAk (x) but 
only on JLAj (x) for j =1= k; see Equation (5.30). However, the values may 
be 0 or 1, according to Equation (5.27). Let us notice that in the case of 
Gaussian antecedent fuzzy sets, the denominator in formula (5.26) always 
equals zero, so the system can not work. For the triangular antecedent fuzzy 
sets, the graphs that show the performance of the NOCFS systems based 
on the Goguen group of implications, are depicted in Fig. 5.21. Comparing 
the graphs of y in Figs. 5.20 and 5.21, we see that the same values of x 
that imply the output values y equal to the arithmetical average of yk, 



www.manaraa.com

148 5. Neuro-Fuzzy Architectures Based on the Logical Approach 

",'(")LL)<" " 
1L-===~~~==~~~ ______ ~ ~ 

X 

FIGURE 5.18. Performance of the NOeFS Mamdani approach neuro-fuzzy sys
tem; with Gaussian membership functions 
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FIGURE 5.19. Performance of the NOeFS neuro-fuzzy system based on the 
Kleene-Dienes group of implications; with Gaussian membership functions 
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FIGURE 5.20. Performance of the NOeFS neuro-fuzzy system based on the 
Zadeh group of implications; with Gaussian membership functions 
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expressed by Equation (5.33), give the same values of y for both neuro
fuzzy systems, based on the Zadeh and the Goguen group of implications. 
Moreover, the system based on the Goguen group of implications produces 
the same values of the output y as all the previously considered systems, 
for the input values x with the highest rule activation degrees. 

Triangular antecedent fuzzy sets can be used for all the kinds of systems 
under consideration. Similar illustrations of the performance of the NOCFS 
Mamdani approach system, as well as the systems based on the Kleene
Dienes and Zadeh group of implications, can be found in [433]. 

The performance of the OCFS neura-fuzzy systems may be portrayed in 
the same way. Using the Gaussian consequent fuzzy sets shown in Fig. 5.16, 
we obtain the graphs that do not differ much either from their NOCFS 
counterparts, or from each other within the groups of implications. To 
explain this situation, we can observe that values of the Pj,k defined by 
Equation (4.11) are rather small. The higher these values are, the greater 
are the differences between the graphs, i.e. the performance of the particular 
neura-fuzzy systems differ more significantly. 

For the OCFS depicted in Fig. 5.16, graphs illustrating how the Mamdani 
approach systems perform are presented in Figs. 5.22 and 5.23, respectively, 
for systems based on the Mamdani and Larsen rules of inference, with the 
architectures shown in Figs. 4.6 and 4.7. These systems are described by 
Equations (4.14) and (4.15). In this case, the output values y depend also 
on pj,k, so the influence of the shapes of the consequent fuzzy sets is visible 
on the graphs. 

The performance of the OCFS neuro-fuzzy systems based on the logical 
approach, for the Gaussian consequent fuzzy sets, shown in Fig. 5.16, are 
portrayed by the following graphs. For the Kleene-Dienes group of implica
tions, Figs. 5.24 and 5.25 illustrate the performance of the systems based on 
the Kleene-Dienes and Lukasiewicz implications, respectively (Figs. 5.4 and 
5.5); described by Equations (5.7) and (5.8). Similar graphs represent the 
behavior of other systems from this implication group. In particular, those 
that exhibit the performance of the neura-fuzzy systems based on the Fodor 
and stochastic implications look almost the same as the graphs depicted 
in Figs. 5.24 and 5.25, respectively. The mathematical descriptions of these 
systems are expressed by formulas (5.18) and (5.10). Their architectures 
are shown in Figs. 5.8 and 5.6. 

For the Zadeh group of implications, Fig. 5.26 portrays the graphs illus
trating the performance of the OCFS system based on the Zadeh impli
cation. The neura-fuzzy architecture of this system is depicted in Fig. 5.13 
and the mathematical description is given by formulas (3.32), (5.23). A very 
similar graph has been obtained for the neura-fuzzy system based on Will
mott implication, presented in Fig. 5.14 and described by Equations (3.32), 
(5.24). The shapes of the functions /-LB' (yk) are the same as those shown 
in Fig. 5.26 but the graphs of these functions are slightly separated from 
each other. The functions of yare almost identical for both systems. 
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FIGURE 5.21. Performance of the NOCFS neuro-fuzzy system based on the 
Goguen group of implications; with triangular membership functions 
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FIGURE 5.22. Performance of the OCFS neuro-fuzzy system based on the Mam
dani rule of inference; with Gaussian membership functions 
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FIGURE 5.23. Performance of the OCFS neuro-fuzzy system based on the Larsen 
rule of inference; with Gaussian membership functions 
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FIGURE 5.24. Performance of the OCFS neuro-fuzzy system based on the 
Kleene-Dienes implication; with Gaussian membership functions 

x 

FIGURE 5.25. Performance of the OCFS neuro-fuzzy system based on the 
Lukasiewicz implication; with Gaussian membership functions 

FIGURE 5.26. Performance of the OCFS neuro-fuzzy system based on the Zadeh 
implication; with Gaussian membership functions 
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Now let us consider the OCFS systems related to the Goguen group 
of implications. Figures 5.27, 5.28, 5.29 illustrate the performance of the 
OCFS systems based on the Goguen, Godel, and Yager implications, re
spectively. These systems are described by Equations (5.12), (5.16), (5.11) 
and their architectures are presented in Fig. 5.9, 5.10, and 5.12. 

For the OCFS neuro-fuzzy system based on the Sharp implication, it is 
better to use the triangular antecedent fuzzy sets, portrayed in Fig. 5.17, in
stead of the Gaussian ones, as explained earlier with regard to the NOCFS 
version of this system. The performance of the OCFS system, for the 
triangular membership functions, is shown in Fig. 5.30. The mathemati
cal description of this system is given by Equation (5.19), so it is clear that 
the values of /LB' (11k), as a function of x, are 0 or 1; as also in the NOCFS 
versions (with the performance illustrated in Fig. 5.21). The neuro-fuzzy 
architecture of the OCFS system is depicted in Fig.5.11. As we see in 
Figs. 5.21 and 5.30, there are some points of x where the values of /LB' (11k) 
equal 0, for each k = 1, ... ,4. It is easy to conclude from Equation (2.107), 
which correspond to the defuzzification layer in Fig. 3.10, that it is not 
possible to determine the output values 11 for these input values x, because 
they imply that the denominator of the formula (2.107) equals O. This is 
one disadvantage of the systems based on the Sharp implication. However, 
it is worth mentioning that for the input values x with the highest rule acti
vation degrees, this system produces the same values of the output 11 as all 
the other systems considered in this section. Moreover, in the same way as 
its NOCFS counterpart, as well as other systems, the values of x such that 
/LAk (x) < 0.5, for k = 1, ... ,4, result in the same output values 11, which 
are equal to the arithmetical average of 11k, expressed by Equation (5.33). 

In order to compare the performance of the neuro-fuzzy systems related 
to the Goguen group of implications, in both cases, i.e. the NOCFS and 
OCFS, graphs for systems based on the Goguen and Godel implications 
are presented in Figs. 5.31 and 5.32, respectively. The triangular antecedent 
fuzzy sets are used, since triangular membership functions have been em
ployed to illustrate the behavior of the NOCFS systems in Fig. 5.21. 

It is also interesting to see the graphs that portray how other neuro-fuzzy 
systems behave in the case of triangular membership functions being used, 
especially those systems based on the Mamdani approach. Therefore the 
performance of the OCFS system that incorporates the Mamdani rule of 
inference is depicted in Fig. 5.33. It is worth emphasizing that this system 
does not produce any output values 11 if the values of /LB' (11k) equal 0 
for all k = 1, ... , 4. The same feature is displayed by the graphs which 
illustrate the behavior of the OCFS system incorporating the Larsen rule 
of inference, as well as the NOCFS counterpart of these systems. The graph 
of /LB' (11k), as a function of x, in the case of the NOCFS system, with 
the triangular membership functions, exactly reflects the shape of these 
functions (Fig. 5.17); just as in the system with Gaussian antecedent fuzzy 
sets (see Fig. 5.18). 
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FIGURE 5.27. Performance of the OCFS neuro-fuzzy system based on the 
Goguen implication; with Gaussian membership functions 
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FIGURE 5.28. Performance of the OCFS neuro-fuzzy system based on the Godel 
implication; with Gaussian membership functions 
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FIGURE 5.29. Performance of the OCFS neuro-fuzzy system based on the Yager 
implication; with Gaussian membership functions 



www.manaraa.com

154 5. Neuro-Fuzzy Architectures Based on the Logical Approach 

",(r') t 
:: ~il n'-~I ; -;1 . 

X Yh ~ r ~ 
) 

X 

FIGURE 5.30. Performance of the OCFS neuro-fuzzy system based on the Sharp 
implication; with triangular membership functions 
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FIGURE 5.31. Performance of the OCFS neuro-fuzzy system based on the 
Goguen implication; with triangular membership functions 
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FIGURE 5.32. Performance of the OCFS neuro-fuzzy system based on the Godel 
implication; with triangular membership functions 
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Figures 5.34 and 5.35 exhibit graphs that illustrate the performance of 
the NOCF8 systems based on the Kleene-Dienes group of implications and 
the OCF8 system based on the Lukasiewicz implication, respectively. The 
latter system is an example of the logical approach systems that belong to 
the Kleene-Dienes group of implications. The analogical graphs that corre
spond to other neuro-fuzzy systems included in this group look the same. 
For instance, the behavior of the OCF8 system based on the Kleene-Dienes 
as well as Fodor implications are portrayed by almost the same graphs as 
depicted in Fig. 5.34. All the graphs related to the logical approach systems 
show that those input values x which do not imply any output values for 
the systems based on the Mamdani approach produce the average output 
values in the systems based on the logical approach. 

It is worth mentioning that similar graphs to that depicted in Figs. 5.22 
and 5.23 illustrate the performance of the OCF8 system based on the 
bounded product rule of inference (see 8ection4.3). The architecture of 
this system is presented in Fig. 4.8 and the mathematical description is ex
pressed by Equation (4.21). Of course, the graphs are not the same. There 
are some differences between these graphs and those shown in Figs. 5.22 
and 5.23 but, in general, they are much alike, especially the graphs that 
portray the output values fi of the systems. It should be emphasized that 
each of these systems is based on the Mamdani approach. 

In this section, the 8180 system has been considered with 4 rules for the 
sake of simplicity, in order to clearly illustrate the performance of different 
implication-based neuro-fuzzy systems. The perceived features of the sys
tems presented can be generalized for their MI80 counterparts, with more 
rules in the form (2.94) or (2.108). The very important conclusion, obtained 
from the graphs of the performance, is that all the systems give the same 
results for the input values with the highest rule activation degrees. The dif
ference between the systems based on the Mamdani and logical approaches 
may also be observed using the graphs of their behavior. For example, the 
former systems (Mamdani approach) require complete partitioning of the 
input space by the antecedent fuzzy sets. They cannot work properly in 
situations when the activation degree of every rule is equal to zero. The 
latter systems (logical approach) in this case determine the average output 
value. 

In the next section applications of the neuro-fuzzy systems, based on 
both the Mamdani and logical approaches, are described. They illustrate 
the practical performance of the different systems, showing that all of them 
can be helpful. Their behavior depends on the number of fuzzy IF-THEN 
rules. The systems must be trained for specific problems, using learning 
algorithms. 
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FIGURE 5.33. Performance of the OCFS neuro-fuzzy system based on the Mam
dani rule of inference; with triangular membership functions 
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FIGURE 5.34. Performance of the NOCFS neuro-fuzzy system based on the 
Kleene-Dienes group of implications; with triangular membership functions 
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FIGURE 5.35. Performance of the OCFS neuro-fuzzy system based on the 
Lukasiewicz implication; with triangular membership functions 
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5.5 Computer Simulations 

The neuro-fuzzy systems presented in this book can be employed to solve 
various tasks. An appropriate neuro-fuzzy architecture with a learning 
method (usually, a hybrid approach; see Section 6) constitute a system 
for practical applications. In order to illustrate how different neuro-fuzzy 
systems perform solving some typical problems, they have been applied to 
the following tasks: function approximation, control examples, classification 
problems. The FLiNN program [395], briefly described in Section 6.1.3, has 
been used to train the systems. The results are portrayed in this section. 

5.5.1 Function Approximation 
Function approximation is typical of the problems that can be solved by 
neural networks. In [92] the behavior of different implication-based fuzzy 
logic systems is tested on the task of linear function approximation (y = x). 
Therefore, this example has also been used to portray the performance of 
the neuro-fuzzy systems. The simple linear function y = x and the non
linear function y = x~+x~ have been chosen to be approximated by the sys
tems. Figures 5.36 and 5.37 show the results of approximation of these two 
functions, respectively. These illustrations refer to most of the neuro-fuzzy 
system architectures described in Chapter 4 and Sections 5.2, 5.3 of this 
chapter. A perfect approximation has been obtained for the systems based 
on the Mamdani approach. Almost all implication-based systems, except 
the Sharp and Goguen implications, give very good results that are similar 
to the perfect one or to those portrayed in Figs. 5.36 and 5.37. Of course, 
the approximation results depend on the number of fuzzy IF-THEN rules 
incorporated into the systems. It is obvious that the function y = x~ + x~ 
requires more rules than the linear function. It has been observed that the 
OCFS systems give better results than their NOCFS counterparts [431]. 

y 

x 

FIGURE 5.36. Approximation of the linear function 
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y 

FIGURE 5.37. Approximation of the square function 

5.5.2 Control Examples 
Control tasks are typical of the problems that are solved by fuzzy sys
tems called fuzzy controllers. The truck backer-upper control problem and 
the inverted pendulum are very popular examples of control tasks. These 
examples are most often used in the literature to test performance of fuzzy 
systems as well as neural networks; see e.g. [359], [166], [360], [268], [273], 
[513], [200], [470]. Therefore, they have also been chosen to illustrate how 
the neuro-fuzzy systems, considered in this book, solve control problems. 

The truck backer-upper task refers to a truck and its loading zone. The 
aim is to get the truck to arrive at the loading dock (a small rectangle in 
the upper side of the loading zone). The truck moves backwards by a fixed 
unit distance at every stage. The truck position is exactly determined by 
three state variables: two coordinates that specify the position in the plane 
(loading zone), and the angle of the truck with the vertical. The control 
variable is the steering angle, produced while backing the truck up to the 
loading dock from any initial position and any angle in the loading zone. 
For the sake of simplicity, we assume that enough clearance exists between 
the truck and the loading dock, so we can ignore the vertical position 
coordinate. 

Figure 5.38 illustrates the trajectories of the truck controlled by the 
neuro-fuzzy systems described in Chapter 4, the systems based on the 
Mamdani approach. Two inputs of the systems correspond to the hori
zontal position coordinate and the angle of the truck with the vertical. The 
output variable is the steering angle. The same or very similar results have 
been obtained for the systems based on the logical approach presented in 
this chapter (the architectures depicted in Sections 5.2, 5.3). However, the 
process of training the implication-based systems is more difficult and takes 
more time, because the architectures contain more elements, especially the 
OCFS architectures. As with the problems of function approximation (Sec
tion 5.5.1), the systems based on the Sharp and Goguen implications are 
not well suited to solving control tasks. However, it is possible to get the 
result shown in Fig. 5.38 by use of the Sharp implication-based system 



www.manaraa.com

5.5 Computer Simulations 159 

[430]. The truck backer-upper control example has also been used to test a 
neuro-fuzzy system with a non-singleton fuzzifier (Section 4.6) in [424]. 

FIGURE 5.38. Illustration of the truck backer-upper control problem 

The inverted pendulum problem, applied in testing neuro-fuzzy systems' 
performance, gives similar conclusions to that of the truck backer-upper 
control problem. Figure 5.39 is an illustration of the inverted pendulum 
stabilization by neuro-fuzzy systems with two inputs corresponding to the 
angle and the angular velocity. More details about this control example 
and similar results obtained by testing a system with a neural network as 
a defuzzifier (Section 4.5.2) and hybrid learning are presented in [422] . 

FIGURE 5.39. Illustration of the inverted pendulum control problem 

The inverted pendulum example is a classical control task with two state 
variables and one control variable. The first state variable is the angle of 
the pendulum shaft (pole) with respect to the vertical. The pole is balanced 
on the moving cart and is free to rotate on the vertical plane of the cart. 
The vertical position of the pole corresponds to the zero value of the angle. 
Positive values of the angle are to the right of the vertical, negative values 
are to the left. Thus the angle ranges from -90 to 90. The second state 
variable is the angular velocity of the pole, i.e. the instantaneous rate of 
change of angle values, usually measured, in practice, as the difference 
between successive angle values. The control variable is the motor (cart) 



www.manaraa.com

160 5. Neuro-Fuzzy Architectures Based on the Logical Approach 

velocity, which can be positive if the pendulum falls to the left, negative if 
it falls to the right, and zero if the pendulum successfully balances on the 
vertical. The goal is to apply force to the cart until the pole is balanced in 
a vertical position. 

5.5.3 Classification Problems 

Various classification tasks can be solved by neural-networks, fuzzy sys
tems, and neuro-fuzzy systems. A very well known problem, which is often 
chosen to test performance of the systems is the IRIS classification. Many 
researchers in the area of cluster analysis have utilized Anderson's IRIS 
data, firstly used by Fisher [128] in 1936 to illustrate the concept of linear 
discriminant analysis. Therefore, these data have also been applied to test 
the systems described in Chapter 4 and Sections 5.2, 5.3. Moreover, other 
classification tasks have been solved by these systems, including medical 
diagnosis problems. The so-called semi-ring classification problem is pre
sented in this section, and results of some medical applications are outlined. 

The IRIS data set is composed of 150 data items, containing flower mea
surements from three species of iris: Setosa, Versicolor, and Virginica. The 
data include information about four features of the iris flowers: sepal length, 
sepal width, petal length, petal width. In this data set, there are 50 data 
items corresponding to each of the iris species. It is worth mentioning that 
the data of Setosa are completely separate from the other two classes, i.e. 
Versicolor, and Virginica, which overlap. 

The NOCFS neuro-fuzzy systems (see Section 5.2) were applied to solve 
the IRIS classification problem. The results obtained by the systems con
structed based on two and three fuzzy IF-THEN rules are shown in Ta
ble 5.1. In the case of three rules, the systems perform similarly, with 
97.33% and 98% of classifications correct for the systems based on the 
Mamdani and logical approaches, respectively. Using only two rules, sys
tems based on the Kleene-Dienes and Zadeh groups of implications (see 
Section 5.1 and 5.2) give the same classification results as systems based 
on the Mamdani approach that incorporate three rules. For the Goguen 
group of implications, the neuro-fuzzy systems perform much worse: in the 
case of two rules, almost the same as the systems with the Mamdani ap
proach type of inference. These results are also presented in [430]. 

TABLE 5.1. Results of IRIS classification 

NOCFS neuro-fuzzy systems 2 rules 3 rules 
The Mamdani approach systems 66.67% 97.33% 
The Kleene-Dienes group of implications 97.33% 98.00% 
The Goguen group of implications 67.33% 98.00% 
The Zadeh group of implications 97.33% 98.00% 
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Another task is related to the semi-ring regions located within the area of 
a square, as shown in Fig. 5.40 (a). This problem is referred to as the semi
ring classification. Each point in the square area belongs to one of three 
classes. Two of them are the semi-rings and the third class is composed of 
the points not included in the semi-rings. The points which belong to the 
first and second classes are associated with numbers 1 and -1, respectively. 
The points located in the area beyond the regions of the semi-rings (the 
third class) are assigned to number O. In order to perform the classification, 
a learning sequence of 1089 points, evenly placed on the square area, with 
properly associated numbers 1, -1, or 0, has been created. 

Different neuro-fuzzy systems, based on the Mamdani and logical ap
proaches, were applied to solve the semi-ring classification task. The two 
coordinate values of the points in the square area were fed to the inputs of 
the systems. The output represented the class corresponding to a classified 
point. The architectures of the systems incorporated ten fuzzy IF-THEN 
rules in the form (2.108), where n = 2, and N = 10. Five of these rules re
ferred to the first class, and the other five to the second class. Figure 5.40 (b) 
portrays 10 points that are the centers of the membership functions of the 
fuzzy sets in the antecedent parts of the rules. The centers of the member
ship functions of the fuzzy sets in the consequent parts of the rules equaled 
1 or -1, respectively, depending on the class. We should remember that 
there are no rules concerning the third class. 

a) b) 

FIGURE 5.40. Illustration of the semi-ring classification: a) class arrangement, 
b) location of the centers of antecedent membership functions 

After the learning process, with Gaussian membership functions, the sys
tems were tested on a sequence of 4225 points, evenly placed on the square 
area. The results are presented in [430]. The general conclusion is that 
logical implication-based systems can solve the semi-ring classification task 
using the rules depicted in Fig. 5.40 (b), which is not sufficient for the sys
tems based on Mamdani approach. The latter systems need additional rules 
related to the third class, i.e. rules with centers of antecedent membership 
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functions located in the area beyond the semi-rings. This is shown in [428], 
using the basic Larsen system (Fig. 4.2) and the NOCFS system based on 
the Kleene-Dienes implication (Fig. 5.1). The NOCFS Larsen system as 
well as the Mamdani system (Fig. 4.1), i.e. the NOCFS systems based on 
the Mamdani approach (Fig. 4.3), cannot perform the classification with
out the additional rules and give the result illustrated in Fig. 5.41 (a). The 
NOCFS systems based on the Kleene-Dienes implication (and Lukasiewicz, 
Reichenbach, Fodor implications), with the same rules, classify points in 
the square area as shown in Fig. 5.41 (b). 

a) b) 

FIGURE 5.41. Classification results: a) for NOCFS systems based on the Mam
dani approach, b) for NOCFS systems based on the Kleene-Dienes group of im
plications 

The NOCFS systems based on the Mamdani approach, as mentioned 
earlier, need additional rules concerning the third class in order to solve 
the semi-ring classification task. If the systems use 10 rules with 6 rules 
corresponding to the semi-rings and 4 rules related to the third class, they 
perform better than in the case of the rules presented in Fig. 5.40 (b) . The 
result of the classification with the 6 plus 4 rules is portrayed in Fig. 5.42 (a). 
Applying the rules depicted in Fig. 5.40 (b) plus 4 additional rules with the 
centers of the antecedent membership functions located in the area beyond 
the semi-rings, the result shown in Fig. 5.42 (b) is obtained. As we see, 
this result is similar to that illustrated in Fig. 5.41 (b), which refers to the 
NOCFS systems based on the Kleene-Dienes group of implications. 

The classification results of neuro-fuzzy systems based on both the Mam
dani and logical approaches are much better than those presented in 
Figs. 5.41 (b) and 5.42 (b) if the number of rules is increased. In this case, 
results of the semi-ring classification by both kinds of the systems bear 
much more resemblance to the class arrangement illustrated in Fig. 5.40. 
However, it is worth emphasizing that systems based on logical implica
tions can solve classification problems in situations where systems based 
on the Mamdani approach do not. 

Another conclusion that can be drawn from the comparison of the semi
ring classification performed by different neuro-fuzzy systems [430] is the 
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a) b) 

FIGURE 5.42. Results of the classification by NOCFS system based on the Mam
dani approach: with 6+4=10 rules, b) with 10+4=14 rules 

following: in many cases, the OCFS systems give better results than their 
NOCFS counterparts. 

One of the medical diagnosis problems refers to tumors in the mucous 
membrane of the uterus. The data of 65 women (52 sick and 13 healthy) 
were collected and analyzed. Each woman's record contains 9 attributes, 
namely: period of time after menopause, body mass index, luteinizing hor
mone, follicle-stimulating hormone, prolactin, estrone, estriadol, aromatase, 
estrogenic receptor. A final attribute, which is a diagnosis of the tumor, is 
also included in each of the records. The diagnosis is expressed as values 
of 0 or 1, for healthy or sick women, respectively. The data were received 
from a hospital in Czestochowa, Poland [420J. 

Various neuro-fuzzy systems can be created in order to solve the medical 
diagnosis problem. They can incorporate different numbers of rules. How
ever, two rules in the form (2.108) are sufficient to obtain a result with 
100% (or almost 100%) correct answers concerning the diagnosis. The sys
tems have 9 inputs corresponding to the attributes and one output that 
refers to the diagnosis. All the kinds of systems presented in Chapter 4 and 
Sections 5.2, 5.3 of this chapter, after a proper learning process, in most 
cases give the same very good final result. For details, see [420], [367], [429J. 

Other medical diagnosis tasks that can be solved by neuro-fuzzy systems 
are described in Section 6.5.3, in Chapter 6. For example, the percentage 
of correct system responses concerning the diagnosis of the breast cancer 
problem ranges from 97.87% to 98.72%, depending on the kind of systems 
employed. 

It has been shown that neuro-fuzzy systems based on logical implica
tion can solve various classification problems, such as IRIS, the semi-ring 
task, and medical diagnosis, with better results than systems based on 
the Mamdani approach, especially in situations where the number of fuzzy 
IF-THEN rules is not great, which means that it is not sufficient for the 
latter systems but good enough for the former ones. 
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Hybrid Learning Methods 

In Chapters 4 and 5 the connectionist, multi-layer architectures of fuzzy 
systems, called fuzzy inference neural networks, were presented. These ar
chitectures are similar to neural networks (see Section 3.1), so learning 
algorithms can be proposed to tune the parameters of the networks, analo
gously to tuning weights in neural networks. The parameters of the neuro
fuzzy architectures define the shape of membership functions of the fuzzy 
sets in the IF-THEN rules. Tuning these parameters thus optimizes the 
form of the rules. Moreover, the number of rules in the rule base of the 
fuzzy systems can be determined using a learning method. The number of 
elements in the first layers of the neuro-fuzzy architectures depends on the 
number of the rules, so this kind of algorithms determines the architectures. 
Hybrid learning, which is the subject of this chapter, consists of a combina
tion of different learning methods, such as gradient, genetic, and clustering 
algorithms. These methods are first described, and then the hybrid algo
rithms for rule generation and parameter tuning are presented, including 
the algorithms proposed in [479], [438], [439], [440], [480], [481]. 

6.1 Gradient Learning Algorithms 

The most popular method of neural network learning is the back-propagation 
algorithm (see Section 3.1.3). It allows weights of neural networks to be 
tuned to the optimal values. The idea for the back-propagation learning 
comes from the steepest descent optimization algorithm [98], which is a 
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gradient method. This idea has also been employed in order to adjust 
parameters of fuzzy (neuro-fuzzy) systems. These parameters are usually 
centers and widths of membership functions of fuzzy sets in the IF-THEN 
rules. The methods of tuning the parameters are iterative formulas, similar 
to the back-propagation algorithm, but applied to neuro-fuzzy systems in 
the form of a connectionist, multi-layer, architecture. Therefore, it is often 
stated that this kind of fuzzy system learning has been derived from neural 
networks. However, the formulas of learning fuzzy and neuro-fuzzy systems 
can be obtained directly from the steepest descent optimization method. 

6.1.1 Learning of Fuzzy Systems 

Fuzzy systems applied as fuzzy controllers can be designed as adaptive con
trol systems [14]. These kind of systems possess an adaptation mechanism 
which allows them to alter their parameters in order to achieve better per
formance. Fuzzy controllers are knowledge-based systems. The knowledge 
base consists of a data base and a rule base. Both the data base and the rule 
base contain fuzzy sets (membership functions) representing the meaning 
of the linguistic values of the process state and control output variables. 
Adaptive fuzzy controllers that modify the rules are called self-organizing 
controllers. They can either modify an existing set of rules or they can start 
with no rules at all and then "learn" their control strategy. In the former 
case, the systems are similar to self-tuning controllers, which only adjust 
parameters of the membership functions, so they alter the shapes of the 
fuzzy sets defining the meaning of linguistic values. Recent work has been 
focused on the use of mathematical optimization techniques to tune the 
fuzzy controllers. 

The membership functions employed in the rule base can be tuned by 
the gradient descent method. This method relies on having a set of training 
data against which the system (controller) is tuned. If a reliable set of con
troller input-output data is available, it is possible to tune the membership 
functions, using a numerical optimization procedure. A basic example of 
this is given in [363], where the gradient descent method is applied to tune 
simple (triangular) membership functions (see also [111]). For details on 
the steepest descent algorithm, see e.g. [446]. 

The rule base of the control system considered in this example is in 
the form (2.94), where Xl, ... ,Xn are the controller inputs (process-state 
variables), and y is the control output variable, At, ... ,A~ are the linguis
tic values of the rule antecedent, and Bk is the linguistic value of the rule 
consequent, k is the rule number, k = 1, ... ,N. The membership func
tions of Af, for i = 1, ... ,n, are triangular functions (simple symmetrical 
triangles) with centers xf and support sf. The triangular membership func
tions are shown in Fig. 2.1, as well as in Fig. 6.1 in the next section. The 
centers are the peak points, i.e. points in the universe of discourse (real 
numbers R) with the maximal values of the membership functions (equal 



www.manaraa.com

6.1 Gradient Learning Algorithms 167 

1), that is the core (Definition 4). The support (Definition 2) represents 
the width parameter of the triangular membership function. The following 
formula expresses this membership function: 

for IXi - xfl :::; q. 
otherwise 

(6.1) 

The control-output membership functions of Bk, for k = 1, ... ,N, in the 
example presented in [363] and [111], are fuzzy singletons (see Definition 3), 
rl, defined on the real number universe of discourse. The system under 
consideration is the multi-input, single-output (MISO) system. Remember 
that the fuzzy systems described in Section 2.3.3 employ the non-singleton, 
i.e. Gaussian, triangular (or other types) output membership functions, 
where 'fl denote the centers of the membership functions. The singletons 
Bk are characterized by the membership function, I-LBk (y), which is equal 
to 1 for y = 'il, and 0 for y # 'fl. 

The max-product composition (Section 2.3.3) and the center-oj-area de
fuzzification method (Section 2.3.1) have been used in this example of fuzzy 
control systems. Thus, the crisp output, inferred from the rule base, is given 
by Equations (2.129), (2.130), and (6.1), where 'il, for k = 1, ... ,N, denote 
the singleton values. It is obvious that the same formulas would describe 
the system if the center avemge defuzzification method, given by Equa
tion (2.105), was applied instead of the eOA method. 

If a set of operating data that represents the desirable control-output, de
noted by y*, is available for various values of the process-state, xi, . .. ,x;', 
then the fuzzy controller can be optimized by minimizing one of the criteria 
on the error between the controller output, expressed by Equations (2.129), 
(2.130), (6.1), and the desired output given by the reference data. By sub
stitution of formulas (6.1) and (2.130) into (2.129), we have an expression 
for the crisp control-output, y, in terms of the membership function pa
rameters xf , sf , and yk, for i = 1, ... ,n, and k = 1, ... ,N. These are 
the parameters to be tuned by the optimization procedure. 

The following objective function E, was minimized in [363] 

E= !(y_y*)2 
2 

(6.2) 

where y* is the desired real-valued control output as given by the reference 
data, and y is the controller output for a particular process-state (input). 

The steepest descent optimization algorithm is applied in [363] in order 
to minimize criterion (6.2). This algorithm is an iterative method that seeks 
to decrease the value of the objective function with each iteration. It relies 
on the fact that the objective function decreases most rapidly from any 
point in the direction of the negative gradient vector of its parameters at 
that point. If we have, for instance, the objective function E (0), where 
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o = [WI, ... Wr f is the vector of the parameters, then the gradient vector 
is in the form 

If Wj (t) is the value of the j-th parameter, j = 1, ... ,r, at iteration t, 
the steepest descent algorithm seeks to decrease the value of the objective 
function by modifying this parameter via the following recursion 

8E(O) 
Wj (t + 1) = Wj (t) - "1 8wj (t) (6.3) 

where "1 is a constant which controls how much the parameters are altered 
at each iteration. It can be difficult to choose a suitable value for the stepsize 
constant (see e.g. [446] for details). As the iterations proceed, the objective 
function converges to a local minimum. 

In the case of the fuzzy system under consideration, the parameters to 
be modified according to formula (6.3) are parameters of the triangular 
membership functions, xf , sf , as well as the output singleton values rl, 
for i = 1, ... ,n, and k = 1, ... ,N. Thus, the parameter vector 0 is 

where r = 2nN + N. 
Substituting Equations (2.130) and (2.129) into (6.2) gives the objective 

function E, in terms of the membership functions defined by formula (6.1), 
that is 

(6.4) 

It should be noted that the value of E, determined from Equation (6.4), 
depends on the values of the input-output data xi and y*. 

The steepest descent algorithm, applied to the parameters xf , sf , yk, 
for i = 1, ... ,n, and k = 1, ... ,N, uses the iterative formulas 

(6.5) 

(6.6) 

(6.7) 
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where "1ll '/}2, "13 are constants. Taking the partial derivatives of E, using 
Equation (6.1), the following recursions have been obtained from (6.5), 
(6.6), (6.7); see [363], [111] 

-k ( ) -k ( ) Tk (y - y*) (yk (t) - y) 2sgn (xi - xn (6.8) 
Xi t + 1 = xi t - "11 N k * 

2::j=lTj Si(t)/-tA:(Xi ) 

yk (t + 1) = yk (t) - "13 ;k (y - y*) (6.10) 
2::j=l Tj 

where Tk is given by Equation (2.130), replacing Xi by xi, and /-tA~ (xi) is 
defined by formula (6.1). • 

Once a set of reliable controller input-output data {xi, ... ,x~, y*} has 
been collected, the optimization procedure according to recursions (6.8), 
(6.9), (6.10) can be performed, assuming initial values of the parameters x~, 
s~, yk, for t = O. The membership functions /-tA~ (Xi) are initially defined 
such that the input domains are divided equally, by a suitable choice of 
the centers x~, and the sets overlap, by a suitable choice of their supports 
s~. The output singleton values yk are chosen to give a suitable range of 
controller outputs covering, for example, a large decrease, small decrease, 
no change, small increase, and a large increase. 

The optimization procedure is conducted as follows: 

• The IF-THEN rules are fired on the input data {xi, ... ,x~} to ob
tain the antecedent values, Tk, for k = 1, ... ,N, and the crisp (real
valued) control-output, y, using Equation (2.129). 

• Parameters yk are updated according to recursion (6.10). 

• Rule firing is repeated applying the new values of yk. 

• Parameters x~ and s~ are updated by recursions (6.8) and (6.9), using 
the new values of yk, Tk, and y. 

• The inference error is calculated according to Equation (6.2). 

• If the change-of-error, obtained from Equation (6.2), is suitably small, 
the optimization is complete; otherwise it is repeated from the begin
ning (first step). 
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This procedure will modify the actual values, rl, used for the controller 
outputs, and will change the centers x~ and width parameters s~ of the 
antecedent fuzzy sets A~, for i = 1, . .. ,n. In this way the fuzzy IF-THEN 
rules will be adjusted in order to achieve the best performance of the con
troller (the minimal value for the inference error). 

The optimization procedure has been employed in several simulated sys
tems, including the problem of a mobile robot avoiding a moving obstacle, 
with some success; see [363] and [111]. 

The gradient descent method described above is essentially for use off
line. However, adaptive controller architectures have also been developed 
for on-line tuning by this method, for example [148]; but in this system 
only the rule consequent membership functions can be tuned via Equa
tion (6.10). Other adaptive controllers, which modify their membership 
functions on-line, have been proposed, applying methods other than the 
gradient descent optimization; see e.g. [19]. 

The iterative formulas (6.8), (6.9), (6.10) constitute the learning algo
rithm of the fuzzy systems under consideration. These systems are Mam
dani approach systems, MISO, with a singleton fuzzifier, triangular an
tecedent membership functions, singleton consequent membership func
tions, the max-min inference method, and the COA defuzzifier (see Sec
tion 2.3). Similar learning algorithms can be determined for the antecedent 
membership functions which are different from the triangular ones. 

We should note that the gradient learning algorithm, given by recursions 
(6.8), (6.9), (6.10), refers to the system described by Equation (2.129). The 
same mathematical description has been obtained for systems with non
singleton consequent fuzzy sets and the CA defuzzification method (see 
Section 2.3.3). Thus the learning algorithm presented in this section can 
also be suitable for systems with triangular antecedents as well as conse
quent fuzzy membership functions. In this case, the consequent membership 
functions could also be Gaussian or other-shaped functions, since only the 
centers of this functions are significant. 

It is worth emphasizing that the possibility of applying the gradient 
learning algorithm to fuzzy systems does not mean that these systems 
have the same learning ability as neural networks. As mentioned before, 
the gradient algorithm is usually employed off-line. In this way the fuzzy 
IF-THEN rules are extracted, so a suitable rule base (with the optimized 
rules) is created, to solve the problem (for example, a control problem). 
Thus, this "learning" algorithm is in fact a method of generating fuzzy 
IF-THEN rules from input-output data, and in this sense it can be viewed 
in a similar way as, for instance, the table-lookup scheme of rule generating 
[513]. Although, the latter method is also called a "learning" or "training" 
method, because it uses learning (training) input-output data, the key idea 
of this method is to generate fuzzy rules from the input-output pairs, collect 
the rules into a rule base, and construct a fuzzy logic system. This system 
thus works, using the prepared rule base, in order to solve a certain problem. 



www.manaraa.com

6.1 Gradient Learning Algorithms 171 

Unlike neural networks, which modify their weights during performance, 
the constructed fuzzy system does not change the generated rule base when 
it is solving the problem. 

6.1.2 Learning of Neuro-Fuzzy Systems 

In Section 6.1.1 the gradient learning algorithm of the Mamdani approach 
fuzzy systems, with triangular membership functions, was presented. It was 
mentioned that a similar algorithm can be determined for the membership 
functions of other shapes. However, it might be very difficult to obtain 
iterative formulas for tuning the parameters of the membership functions, if 
these functions are not differentiable. From this point of view, the Gaussian 
membership functions are very convenient, even more so than the triangular 
ones. 

In [513] the gradient algorithm, similar to that described in Section 6.1.1, 
was determined for the fuzzy logic systems, MISO, using the Mamdani ap
proach, with a singleton fuzzifier, CA defuzzifier, and Gaussian member
ship functions. Lemmas 1 and 2, included in Section 2.3.3, were formulated 
for these systems. In general, the steepest descent optimization method 
can be employed to tune the parameters of the membership functions to 
the fuzzy systems described by Equations (2.126) or (2.127). Triangular 
or Gaussian membership functions (as well as others) can be used. The 
parameters, which can be modified during the learning algorithm, are indi
cated in Figs. 6.1 and 6.2. The triangular function parameters, centers xf 
and widths s~, tuned by the algorithm presented in Section 6.1.1, are shown 
in Fig. 6.1. The analogical parameters, also called centers and widths, de
noted xf and uf, respectively, for the Gaussian membership function, are 
illustrated in Fig. 6.2. 

FIGURE 6.1. Genter and width parameters of triangular membership function 
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FIGURE 6.2. Center and width parameters of Gaussian membership function 

It is easier to determine the gradient learning algorithm for the system 
described by Equation (2.127) with Gaussian membership functions. This 
system is referred to in Lemma 2, and uses the product operation, while 
the system depicted in Lemma 1 employs the min operation. Unfortunately, 
the min is not a differentiable function, but it is possible to determine the 
learning algorithm in this case; see e.g. [420]. Now, let us consider a system 
with the product operation and Gaussian membership functions. In the 
same way as in Section 6.1.1, by applying the steepest descent optimization 
method to minimize the objective function (6.2), the following recursions 
have been obtained in [513]; see also [300], [301], [434] 

xf (t + 1) = xf (t) _ 'fI Tk (y - y*~(yk (t) - y) 2 (xi - Xp 
2:j =l Tj (0": (t)) 

(6.11) 

(6.12) 

(6.13) 

where xf ,0": are the center and width parameters, respectively of the 
Gaussian membership functions J-LAk (Xi), and yk are centers of the conse
quent membership functions J-LBk (y), for i = 1, ... ,n, and k = 1, ... ,N, 
the constant 'fI denotes the stepsize of the steepest descent algorithm, Tk is 
given by formula (2.130), replacing Xi by xi, and similarly J-LAk (Xi) defined 
by Equation (2.131). Of course, different constants 'fI1, 1/2, 'fI3 c~ be used in 
these recursions instead of 'fl. 

The momentum terms f3 (xf (t) - xf (t -1)), f3 (O"f (t) - O"f (t -1)), and 
f3 (yk (t) - yk (t -1)), where t = 0,1,,2, ... , and f3 is a constant, called the 
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momentum coefficient (see Section 3.1), can be added to Equations (6.11), 
(6.12), and (6.13), respectively, in order to speed up the convergence [424], 
[423J. Different values of the {3 coefficients can be used in each recursion, 
as can different values of the learning coefficient, 'TI. 

The iterative expressions (6.11), (6.12), (6.13) constitute the algorithm 
for tuning the parameters x~ , (T~, 'fl, for i = 1, . .. ,n, and k = 1, ... ,N, 
of the Gaussian membership functions, in the same way as the analogical 
equations determined in Section 6.1.1 for tuning the parameters of the 
triangular membership functions. Thus, this algorithm can be performed 
in the same way and viewed as a method of generating fuzzy IF-THEN 
rules from input-output data. From this point of view, it can be treated as 
a method of "learning" fuzzy systems off-line. 

However, the algorithm realized by Equations (6.11), (6.12), (6.13), as 
well as the similar method of learning presented in Section 6.1.1, can be 
viewed as an error back-propagation procedure with reference to the neuro
fuzzy connectionist network [513], [300], [301], [434J. The fuzzy logic sys
tems considered in this and the previous section are described by Equa
tion (2.129). It was shown in Section 4.1 that these fuzzy systems can be 
represented in the form of connectionist multi-layer architectures, similar 
to the feed-forward multi-layer neural networks. These architectures, illus
trated in Figs. 4.1 and 4.2, can be trained in the same way as neural net
works, by use of a back-propagation method based on the steepest descent 
optimization algorithm. 

Applying the idea of error back-propagation to the connectionist neuro
fuzzy architecture, the recursions (6.11), (6.12), (6.13) are obtained in [513J; 
see also [300], [301], [434J. This learning algorithm refers to the architec
ture depicted in Fig. 4.2, with the product operator and Gaussian member
ship functions. For the same architecture, but with triangular membership 
functions, we can apply the recursions (6.8), (6.9), (6.10) as the learning 
algorithm. 

If we represent the fuzzy systems in the form of connectionist multi-layer 
networks, we can realize the learning procedures in the same way as the 
back-propagation algorithm in neural networks. These algorithms can be 
performed on-line, and the fuzzy systems viewed as connectionist networks 
possess learning ability in the same sense as the neural networks. 

Moreover, if the fuzzy systems are represented in the form of the connec
tionist multi-layer architectures, they can be trained by incorporating the 
idea of back-propagation, using software such as the FLiNN program [395J, 
which does not require the mathematical equations (6.11), (6.12), (6.13) or 
(6.8), (6.9), (6.10). The FLiNN program realizes the error back-propagation 
for any connectionist architecture built by use of the basic components 
which can serve as the elements of particular layers. This program allows 
any multi-layer network to be constructed from these elements, and can 
perform back-propagation learning based on the architecture, rather than 
on the mathematical recursions. This feature of the program is very impor-
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tant and advantageous, because it is much easier to build the connectionist 
architecture of a fuzzy system than determine the iterative equations of 
a learning algorithm. The latter is especially difficult when nondifferen
tiable functions appear in the system description. It is also very easy to 
replace, for example, product operator elements by min elements, or Gaus
sian function elements by triangular function elements in the architectures 
constructed employing the FLiNN program. These changes, without a pro
gram like FLiNN, are not so easy to realize by use of the mathematical 
formulas. Therefore, instead of determine the learning algorithms in the 
form of mathematical recursions, for different fuzzy systems, for instance 
with the inference based on the logical implications, we can represent the 
systems as connectionist neuro-fuzzy architectures and apply software for 
learning the networks. 

6.1.3 FLiNN - Architecture Based Learning 

The FLiNN program [395] realizes the back-propagation method oflearning 
neural networks or neuro-fuzzy systems based on their architectures. This 
approach was introduced in [394], [396]. FLiNN stands for Fuzzy Logic 
and Neural Networks. This program is a universal network trainer that 
can tune the parameters (weights) of any neural network or neuro-fuzzy 
architecture. The most important advantage of architecture-based learning 
is the fact that it does not need the mathematical formulas of the gradient 
learning algorithms. The traditional approach requires iterative formulas 
of learning for each kind of neuro-fuzzy architectures (see e.g. [420]). It is 
worth emphasizing that in many cases it is very difficult to determine these 
formulas, especially when the architecture contains elements performing 
non-differentiable functions. Software that incorporates architecture-based 
learning is thus a very useful tool for training neuro-fuzzy systems. 

The special Feedforward Network Description Language (FNDL) is pro
posed in [394], [396] to realize architecture-based learning in the FLiNN pro
gram, and a library of the basic elements has been created. These elements 
perform such operations like addition, multiplication, division, minimum, 
maximum, exponent, as well as the Gaussian and triangular functions. For 
details, see [396], [395]. The sigmoidal function, and others, can also be 
employed by use of these elements. For a feed-forward network (neural net
work or neuro-fuzzy architecture), which consists of a limited number of 
elements organized in layers, the FLiNN program can construct the archi
tecture and tune its parameters according to the back-propagation method. 
Networks (architectures) are described in the FNDL language, which al
lows to specify the elements and connections between them. In case of 
any modification of a network, the FLiNN program automatically updates 
its learning algorithm, without knowing the mathematical formulas that 
describe the gradient learning method for different network architectures. 
This can be done in the manner presented in [394], [396]. The main idea 
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of this method reflects the way of error back-propagation within a network 
and the fact that every element "knows" how to propagate the error sig
nal from its output to the outputs of the elements in the preceding layer. 
Thus the knowledge expressed by the learning (mathematical) formulas is 
incorporated into the corresponding network architectures. 

The FLiNN software is a tool for creating, training, and testing various 
neural network and neuro-fuzzy architectures. It also contains several very 
useful options, like extracting fuzzy rules from training data, creation and 
visualization of 3D control surfaces, visualization of training errors, and 
many others. The program of this kind is especially helpful when applied 
to the implication-based neuro-fuzzy systems presented in Chapter 5, as 
well as to the systems described in Chapter 4. 

6.2 Genetic Algorithms 

The gradient learning algorithms presented in Section 6.1 suffer from one 
main drawback, namely that they perform local optimization. This means 
that they seek optimal solutions, which depend on the starting points, i.e. 
the initial values of the tuned parameters. If the starting point is close to a 
local optimum, the gradient method will find this optimum as the solution, 
while it should search for the global optimum. 

Some research has been carried out in order to choose a proper starting 
point for the gradient method such as the back-propagation. Several ran
dom initialization schemes are compared in [498], using a very large number 
of computer experiments. Other ideas concerning the initialization of the 
gradient algorithm, not based on random initial values, have also been pro
posed, as well as alternative global optimization algorithms. The methods 
very often applied to eliminate the drawback of the gradient algorithms are 
genetic algorithms, and clustering algorithms, described in this section and 
the next one, respectively. 

6.2.1 Basic Genetic Algorithm 
Genetic algorithms (GAs) are search methods based on natural selection 
and genetics. They were invented to mimic some of the processes observed 
in natural evolution. This kind of algorithm was proposed and developed 
by Holland [188], [189] as an efficient search mechanism in artificially adap
tive systems. GAs have mainly been applied in optimization problems. The 
idea incorporated in these algorithms imitates the phenomenon of survival 
of the fittest individual in a population. The individuals are represented by 
chromosomes, in the form of strings of genes. The mechanics of a simple 
(basic) genetic algorithm (GA) are actually very simple, mostly copying 
the strings and swapping parts of them. In this way, a new population of 
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chromosomes is created, employing the following basic operations: selec
tion, crossover, and mutation. The chromosomes in each population are 
evaluated according to an appropriately defined fitness function. In opti
mization tasks, this evaluation function is usually chosen as the optimized 
function, also called the objective function. Potential solutions of the prob
lem under consideration are coded into the chromosomes and the best one, 
with regard to the fitness value, obtained from this algorithm is treated as 
the optimal (or near optimal) solution. GAs are described in detail, e.g. in 
[150], [103], [325], [132]. 

The basic GA is illustrated by the flowchart shown in Fig. 6.3. The first 
step of the algorithm is initialization of a population of chromosomes. In the 
simple GA the chromosomes are binary strings of potential solutions, and 
the population is created randomly. Then, each chromosome in this popu
lation is evaluated by means of the fitness function. The best chromosome 
can be chosen from this population. Usually, however, the algorithm does 
not stop at this point. The next step is the selection operation. Different 
methods of selection can be employed. In the basic GA, this operation 
is realized using the roulette wheel method, which will be presented later 
in this section. The selection is applied in order to choose the chromo
somes that will participate in the process of creating a new population, by 
use of the crossover and mutation operators. In this way, the initial (pre
vious) population improves, replacing some chromosomes by better ones, 
with reference to their fitness values. The chromosomes that constitute the 
population obtained after the crossover and mutation operations (the new 
generation of chromosomes) are evaluated according to the fitness function, 
and the process is repeated until the stop criterium is attained. The idea 
is that the new population will contain better chromosomes than the old 
one, and the best chromosome in the final population, produced by the 
algorithm, is treated as the solution to the problem. 

Now, let us explain how the potential solutions of a problem under con
sideration are coded into the chromosomes, and how the selection, as well 
as the main genetic operators (i.e. crossover and mutation), work. 

To use the simple GA we must first code values of the variables of our 
problem in the form of binary strings, called chromosomes. The method of 
this coding depends on the problem under consideration. For example, if the 
variables take values from a domain D = [dB, dE] c R, where dB, and dE 
refer to the beginning and end of this real-valued interval D, respectively, 
then the real-values of the variables can be coded with certain required 
precision. Let us assume that we wish to achieve a precision of b decimal 
places. In this case, the domain D should be cut into (dE - dB) . lOb equal 
size ranges. Let us denote the smallest integer by s so that 

(dE - dB) . lOb ~ 28 -1 

Then the representation of values of the variables in the form of binary 
strings of length 8 clearly satisfies the precision requirement. The following 
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FIGURE 6.3. Flowchart of basic GA 

formula interprets this way of coding the value of a variable xED into the 
binary string (chromosome composed of s genes) 

dE-dB 
x = dB + y. 28 _ 1 

where y expresses the decimal value of this binary string (of length s). 
This coding method can be applied in optimization problems of a function 
with many variables (see [325]). In the special, very simple case, where the 
variables take only integer values from the domain D, the coding procedure 
is much easier. For example, using 4-bit strings and the well-known notation 
of a binary integer, we can code the integer numbers from [0,15] as follows 

0000 
1000 

0001 
1001 

0010 
1010 

0011 
1011 

0100 
1100 

0101 
1101 

0110 
1110 

0111 
1111 

In the same way, we can represent the integer numbers from [0,31]' em
ploying 5-bit strings, and so on. 

The selection applied in the basic GA is referred to as the roulette wheel 
method, because it can be viewed as allocating pie-shaped slices (segments, 
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sectors) on a roulette wheel to the chromosomes in a population, propor
tionally to their fitness values. The selection process can be seen as a spin 
of the wheel, with the winning chromosome being the one in whose sector 
the roulette spinner ends up. Of course, the chromosomes associated with 
bigger segments on the wheel are more likely to be chosen as the winners. 
Thus, the highly fit individuals have the greatest chance of being selected. 
The roulette wheel selection may be realized as an algorithmic implemen
tation in many different ways (for details, see the literature cited above). 
One of them will be presented later in this section. 

The chromosomes selected by use of the roulette wheel method constitute 
a tentative new population (mating pool) with the same number of chro
mosomes, but some of them (usually the highly fit) can be copied several 
times. The members of this population are treated as parent chromosomes 
which can produce new chromosomes (offspring) by gene recombination, in 
the next step of the basic GA, involving genetic operators, such as crossover 
and mutation. 

After the selection, members of the mating pool are mated at random, 
and for each pair of these parent chromosomes the crossover operator is ap
plied. Then the mutation operator is employed to alter one (or more) genes 
in some of the chromosomes, also chosen at random. The mutation changes 
the value of one gene, so it can replace 0 to 1 or 1 to O. The crossover recom
bines genes by swapping parts of chromosome strings. Firstly, an integer 
number, L, that indicates the position (locus) of a gene in the chromosome 
string is chosen at random, between 1 and the string length (number of 
genes in the chromosome) minus 1. Then, two new chromosomes are created 
by swapping all the genes located after the position L. To illustrate these 
operations, let us assume that the following chromosomes (composed of 8 
genes) have been selected as parents to produce two offspring, by use of 
the crossover operator, with the locus L = 3 

Parent 1: 01110101 
Parent 2: 11001010 

Offspring 1: 
Offspring 2: 

01101010 
11010101 

and the offspring 1 has been chosen for the mutation operation on the 
position 5, so the offspring after this mutation is 

01100010 

The offspring chromosomes, after the mutation, are introduced into the 
new population, which constitutes a new generation of chromosomes, 
characterized by a higher average fitness value. It is worth mentioning 
that the mutation takes place with very low probability, so the main ge
netic operator in the basic GA is the crossover. However, the mutation is 
necessary because it introduces more diversity to the populations of chro
mosomes. Otherwise, premature convergence could occur. This means that 
we can obtain a population in which all the chromosomes are the same, but 
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they do not represent the optimal solution. The mutation prevents such a 
situation arising. 

To explain the above operations more precisely, let Ci, for i = 1, ... ,K, 
denotes chromosomes in a population of size K, so the number of chro
mosomes in this population equals K. The chromosomes are composed of 
genes. Assuming that the number of genes in the chromosomes equals m, 
the chromosomes in the population can be presented as follows 

Cl = {al,l al,2 

C2 = {a2,1 a2,2 

where ai,j, for i = 1, ... ,K, and j = 1, ... ,m, denote values of genes 
(called alleles), which in the basic GA can be ° or 1. Let F be a fitness 
function that evaluates the chromosomes. Thus, the total fitness of the 
population is 

K 

Fpop = LF(Ci) 
i=l 

and Fpop/ K is the average fitness value of the population. 
The following formula expresses the probability of chromosome Ci being 

selected by the roulette wheel method 

P(Ci) = F(Ci) 
Fpop 

The roulette wheel selection can be formalized in the following way: 
Generate a number, r, at random from the interval [0, 1]. Calculate a cu
mulative probability, qi, for each chromosome Ci; i = 1, ... ,K, as 

i 

qi = LP(Cl) 
l=1 

If r < q1 then select the first chromosome, C1, otherwise choose the i-th, 
that is Ci, for 2 ::;; i ::;; K, such that qi-1 < r ::;; qi. As mentioned earlier, 
some chromosomes might be selected more than once. 

Let us assume that the recombination operator (crossover) is applied 
to chromosomes C1 and C2. In fact the selection of the parent chromo
somes takes place according to a probability of crossover, Pc, which is one 
of the parameters of GAs. This probability gives the information about the 
number of chromosomes expected to undergo the crossover operation. For 
each chromosome in the population (mating pool) a number, r, from the 
interval [0,1], is generated at random. If r < Pc then the chromosome asso
ciated with this number is chosen for the crossover operation. The selected 
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chromosomes are mated randomly. Then, for each pair of coupled parent 
chromosomes an integer number is generated at random from the inter
val [1, m - 1]. This number indicates the locus, L, of the crossing point. 
The crossover operation applied to the chromosomes Cl and C2, with the 
crossing point L, is illustrated as follows. The parent chromosomes 

Cl = {al,l al,2 al,L al,L+l al,m} 

C2 = {a2,1 a2,2 a2,L a2,L+l a2,m} 

are replaced by the following pair of their offspring 

c~ = {al,l al,2 al,L a2,L+l a2,m} 

c; = {a2,1 a2,2 a2,L al,L+l al,m} 

In the above illustration of the crossover operation, it was assumed that 
the locus of genes corresponds to the order of their location in the chromo
some. This is true in the basic GA, it may, however, be different in some 
evolutionary algorithms. The crossover operation in the simple GA is re
ferred to as one-point crossover, because only one crossing point is chosen 
to perform the crossover. 

The mutation operator, as already shown in this section, changes the 
value of a selected gene, from 0 to 1 or vise versa. The mutation is performed 
according to a probability of mutation, Pm, which is another parameter of 
GAs. It gives information about the expected number of mutated genes. 
For each chromosome in the current (i.e. post-crossover) population, and 
for each gene within the chromosome, a number, r, from the interval [0,1], 
is generated at random. If r < Pm then the selected gene is mutated. 
As mentioned before, values of the probability of mutation, for problems 
solving by GAs, are usually very small, much less than the values of the 
probability of crossover. 

It is worth mentioning that the evaluation of each chromosomes by use 
of the fitness function, F, actually takes place on decoded versions of the 
chromosomes, i.e. on the corresponding values of the variables represented 
by the chromosomes. These values are referred to as phenotypes, while 
their chromosomal representations - as genotypes. This vocabulary, as well 
as other words used in GAs, is borrowed from natural genetics. 

The algorithm (basic GA) is usually terminated after some number of 
generations, if no further improvement is observed. However, it can be 
stopped after a fixed number of iterations, depending on speed or other 
criteria. 

As we can see, GAs differ from classical optimization and search tech
niques. Firstly, they perform searches from a population of potential so
lutions, not from a single point (in the search space). Therefore, they can 
find the optimal solution more easily, without getting trapped in a local 
optimum. Secondly, they operate on coded versions of the potential solu
tions, not directly on the points of the search space. Thirdly, they do not 
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use derivatives, only the objective (fitness) function. Fourthly, they employ 
probabilistic rather than deterministic transition rules. 

The theoretical foundations of GAs are based on a binary string rep
resentation of solutions, and on the notion of a schema, i.e. a template 
that allows similarities to be sought among chromosomes and helps to 
explain how a GA works. Interested readers are referred to e.g. [189], [150], 
[325]. A theorem has been formulated, called the Schema Theorem, which 
says that a schema occurring in chromosomes with above-average evalua
tions (by the fitness function) will tend to appear more frequently in the 
next generation, and a schema that occurs in chromosomes with below
average evaluations will tend to appear less frequently (ignoring the effect 
of crossover and mutation). This feature of GAs has been described by 
Holland as one of intristic parallelism, in that the algorithm is manipulat
ing a large number of schema in parallel. A hypothesis called the Building 
Block Hypothesis has also been formulated. It says that a GA seeks near 
optimal performance through the juxtaposition of a special kind of schema 
(building blocks). 

6.2.2 Evolutionary Algorithms 

The simple GA, presented in Section 6.2.1, that is the GA in its basic 
form, uses binary chromosomes, roulette wheel selection, and one-point 
crossover. A great deal of research has been devoted to investigating many 
different variations of the basic genetic operators, encoding schemes, and so 
on. New versions of GAs have thus been introduced. Various modifications 
of the simple GA have led to algorithms that differ greatly from the basic 
one. Other similar methods based on the process of natural evolution have 
also been proposed independently. Examples include evolution strategies, 
developed in Germany by Schwefel [456], [457], and evolutionary program
ming in USA, by Fogel [130], [131]' both during the 1960s; see also [132]' 
as well as [325]. Another is genetic programming, introduced by Koza in 
1990 to find the most appropriate computer program to solve a particular 
problem [276], [277]. Information about other evolution-based algorithms 
can be found e.g. in [325], [150]. All of them are referred to as evolutionary 
algorithms rather than genetic algorithms. 

Let us now present some modifications of the classical (basic) GA, in
tended to improve its performance. Firstly, instead of the binary chromo
somes that are applied in the basic GA, real-valued genes can be used 
in chromosomes. This way the chromosomes are not as long as their bi
nary counterparts. Different alternative methods concerning the selection 
process have been investigated; see e.g. [150]. One of the most frequently 
employed, apart from the roulette wheel method, is tournament selection; 
it will be described later in this section. Some of the modifications con
cern the crossover and mutation. Other genetic operators have also been 
proposed. 
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In order to keep the best fit chromosomes in new populations, the so
called elitist strategy [106] and steady-state GA [525], [488] have been pro
posed; see also [103]. The elitist strategy preserves the best chromosome 
of each generation by copying it into the next generation. In some imple
mentations of GAs, if no increasingly fit individual (chromosome) has been 
discovered between generations, the elitist strategy simply carries forward 
the most fit chromosome from the previous generation into the next. How
ever, in some optimization problems, this strategy can sometimes lead to 
premature convergence. 

In the steady-state GA, the number of new chromosomes (offspring) to 
be created in order to replace the same number of parent chromosomes can 
be chosen as a parameter. In the basic GA, the number of these chromo
somes equals the population size (i.e. the number of chromosomes in the 
population, denoted by K), which is the main parameter of GAs. Many 
practitioners, using the steady-state GA, replace just one or two chromo
somes at a time. Further modifications have been suggested, for example, 
the steady-state GA without duplicates. In this algorithm the chromosomes 
created (offspring) that are duplicates of ones in the current population are 
discarded rather than inserted. Therefore every chromosome (in the popu
lation) will be different. For details, see e.g. [103]. 

Another modification of the simple GA, proposed in [11], is a GA with 
a Varying Population Size. This algorithm does not employ any variation 
of the selection mechanism but rather introduces the concept of "age" of a 
chromosome, which is equivalent to the number of generations the chromo
some stays" alive" . Thus the age of the chromosome supersedes the concept 
of selection, and it influences the size of the population at every stage of 
the algorithm, since it depends on the fitness of the chromosome. The idea 
of this approach came from natural environments, where the aging process 
is well-known. This evolutionary algorithm is also presented in [325]. 

Many other different improvements have been introduced to the basic 
GA. The interested reader can find information in the literature on GAs; 
see e.g. [150], [103], [325]. In this section only tournament selection, and 
some genetic operators such as crossover and mutation, will be described. 

Different selection methods are examined in [51]. One of them is tour
nament selection; see also e.g. [49]. This method selects a number, K, of 
chromosomes from the population, and then chooses the best one to en
ter the next generation. This process is repeated K times, where K is the 
population size. It is clear that large values of K increase the selective pres
sure of this procedure. A typical value, accepted by many applications, is 
K = 2. Thus, after drawing a pair of successive chromosomes, the one with 
the higher fitness value is declared the winner and inserted into the new 
population, and another pair is drawn. This process continues until the 
population is full (K times). Many experiments have demonstrated the su
periority of the tournament selection over the roulette wheel method. The 
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reader interested in other selection methods may also be referred to [150], 
[325]. 

Although one-point crossover was inspired by biological processes, its al
gorithmic counterpart, employed in the simple GA, has some drawbacks; see 
[103]. Therefore, two-point crossover, as well as other crossover operators, 
with many crossing points, has been proposed. 

Two-point crossover, as its name indicates, realizes a crossover operation 
with two crossing points. Let Ll and L2 denote these two crossing points. In 
this case, the two-point crossover can be illustrated as follows. The parent 
chromosomes, in the form 

Cl = {al,l al,2 al,L1 al,L1+l al,L2 al,L2+1 ... al,m} 

C2 = {a2,l a2,2 a2,L1 a2,L1 +1 a2,L2 a2,L2+1·· . a2,m} 

are replaced by the following pair of their offspring 

c~ = {al,l al,2 al,Ll a2,Ll+l a2,L2 al,L2+1 ... al,m} 

c~ = {a2,1 a2,2 a2,Ll al,L1 +1 al,L2 a2,L2+1·· . a2,m} 

Thus, the offspring chromosomes take the first and the last part of the genes 
(set apart by the crossing points) from one parent and the middle part from 
another parent. Analogously, the crossover operation can be realized with 
more than two crossing points, called multi-point crossover; see e.g. [103]. 

Another kind of crossover operation is described in [488] and called uni
form crossover. Two parents are selected for the crossover and two off
spring chromosomes are produced; just as in the one-point and multi-point 
crossover. However, the process of gene swapping between the parent chro
mosomes proceeds in a different manner. For each gene position (locus) on 
the two offspring, it is decided randomly which parent contributes its gene 
value (allel) to which offspring. For each locus on the parent chromosomes, 
a special template (generated randomly) indicates which parent will deliver 
its value in that position to the first offspring. The second offspring receives 
the allel in this locus from the other parent. The template is a pattern com
posed of 0 and 1 values, generated at random. The length of this template 
is equal to the number of genes in the chromosomes. The values 1 or 0, in 
particular positions in this template mean that the alleles associated with 
that loci come from the first or the second parent, respectively. Assuming 
that m = 12 and the following template has been generated randomly 

[0 1 0 1 1 0 1 1 1 0 1 1] 

and the parent chromosomes are in the form 

Cl = {al,l al,2 al,3 al,4 al,5 al,6 al,7 al,8 al,9 al,lO al,ll al,l2} 

C2 = {a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8 a2,9 a2,10 a2,1l a2,l2} 
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their pair of offspring, produced by uniform crossover, according the above 
template, are represented as 

c~ = {a2,1 al,2 a2,3 al,4 al,5 a2,6 al,7 al,8 al,9 a2,IO al,l1 al,12} 

c~ = {al,1 a2,2 al,3 a2,4 a2,5 al,6 a2,7 a2,8 a2,9 al,IO a2,11 a2,12} 

An example of uniform crossover is also depicted in [103]. 
The mutation operator in the basic GA is related to the binary repre

sentation of chromosomes, and changes the alleles equalling 0 to 1 and vice 
versa. It is obvious that this operator must be modified if real coding is 
employed. In this case, the alleles are real-valued numbers, so the mutation 
operator that changes the value of one single gene should be defined in a 
different way. For example, mutation can change the real value of a gene 
by adding a small randomly generated real value to it. 

Other types of crossover and mutation operators have been proposed for 
specific problems to be solved by GAs. For instance, combinatorical tasks, 
where chromosomes represent potential solutions in the form of permu
tations of genes, require different crossover and mutation operators from 
those used in classical GAs. The genetic operators, called position-based 
crossover and position-based mutation, investigated in [370], as well as the 
operators called order-based crossover and order-based mutation, studied 
in [489], are suitable for such tasks (e.g. the Traveling Salesman Problem 
or Scheduling Problem). The edge recombination crossover, described in 
detail in [528], has also been created to be applied to these problems. 

It is worth mentioning that, as well as the crossover and mutation 
operators, the inversion operator has also been introduced, by Holland 
[189]. This operator inverts the order of genes between two randomly cho
sen positions (loci) in a chromosome. In spite of the fact that the idea of 
using this operator was inspired by a biological process, it is rarely em
ployed in GAs. However, such an operator can be helpful when applied to 
combinatorical tasks, for example to solve the Traveling Salesman Problem 
by a GAj see e.g. [325]. 

Although the GAs with various modifications of the classical genetic 
operators, selection strategies, and so on, are referred to as evolutionary 
algorithms rather than genetic algorithms, the latter name is often used 
in the literature in this broader sense, and not only with reference to the 
basic GA. 

A great number of different implementations of the evolutionary (ge
netic) algorithms have been produced in the form of computer software. 
They usually realize many options, including various modifications of the 
basic GA. For example, the FlexTool (GA) employs binary representa
tions of individuals, but in order to reduce the length of the chromosomes, 
it can also apply a special kind of coding, called logarithmic codingj see 
[587], as well as [434]. Besides, the program allows the selection method 
to be chosen, for example the roulette wheel or tournament selection. The 
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Evolver [588] is software that can solve different optimization problems, in
cluding combinatorical tasks. It uses real-valued chromosomes and realizes 
the steady-state GA. There are many different evolutionary algorithms im
plemented for special applications. As an example, let us point out the 
Genetic Training Option (GTO), which cooperates with the Brain Maker 
[589], i.e. the software applied in order to train neural networks. The ge
netic operators (crossover and mutation) in GTO are specially designed 
for this kind of application, which is neural network optimization using 
combinations of the BrainMaker and GTO; see [590]. 

6.3 Clustering Algorithms 

This section addresses clustering, also known as unsupervised learning or 
self-organization (see Section 3.1.8). By clustering, we usually mean the 
partitioning of a collection of objects (data) into subsets, called clusters, 
that contain elements with common properties which distinguish them from 
the members of the other clusters. Cluster analysis is thus essentially the 
classification of a given data set into a certain number of clusters where the 
elements within each cluster should be as similar as possible and dissimi
lar from those of other clusters. This implies the existence of a measure of 
distance or similarity between the elements to be classified. Clustering algo
rithms are mathematical tools for detecting similarities between members 
of a collection of objects. Most cluster analysis methods require a measure 
of similarity to be defined for every pairwise combination of the entities to 
be clustered. Clustering algorithms produce partitions of a given data set, 
resulting in a number of clusters. 

6.3.1 Cluster Analysis 

The aim of cluster analysis is to partition a given set of data or objects 
into clusters (subsets, groups, classes). As mentioned earlier, this partition 
should have the two following properties: the data that belong to the same 
cluster should be as similar as possible, and the data that belong to different 
clusters should be as different as possible. The former feature is referred 
to as homogeneity, and the latter one as heterogeneity. Thus, the clusters 
should be formed as homogeneous subsets. The concept of "similarity" has 
to be specified according to the data. In different tasks of cluster analysis, 
the data may come from the area of medical diagnosis in the form of a 
database about patients, they may describe states of an industrial produc
tion plant, they may be available as images, etc. In most cases, where the 
data are represented as real-valued vectors, the Euclidean distance between 
data can be used as a measure of their similarity. Generally, the data may 
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be qualitative, quantitative, or both. They may be numerical, pictorial, 
textual, linguistic, etc., as well as any combinations thereof. 

Cluster analysis has played an important role in solving many problems, 
especially in pattern recognition, where classification of objects is a field 
of intensive research and practical applications. The term "pattern recog
nition" may be defined in different ways. A survey of the definitions is 
provided in [509]. Quite simply, we can say that pattern recognition is a 
search for structure in data [33]. One of the survey papers (published in 
the 1960s), which describes the role of cluster analysis in pattern recog
nition is [344], but there are many other papers (also very good survey 
papers), textbooks, and monographs on this subject, e.g. [500]. In [116], 
for example, Bayesian classifiers, which are most often employed in pattern 
recognition, are described, and there are also valuable references to the re
lated literature. The books [8], [502], [164] refer explicitly, in their titles, to 
cluster analysis or clustering algorithms. 

Cluster analysis is a field of data analysisj see e.g. [33], [197]. There is a 
difference between clustering and classification. Let X = {XI,X2, ... ,Xq} 
be a data set of q items Xj, where j = 1, ... ,q. Clustering in X has 
classically meant the identification of an integer c, such as 2 :::; c < q, 
and a partitioning of X by c mutually exclusive, collectively exhaustive 
subsets of X, i.e. the homogeneous clusters. The cluster structure in X 
may reveal associations between each data item Xj. By the structure we 
mean the manner in which the information carried by the data is organized. 
Let S denote a data space from which X has been drawn, that is XeS. 
A classifier for S is a device or means whereby S itself is partitioned into 
c "decision regions". Explicit representation of these regions, as well as 
the role played by a sample data set X from data space S in classifier 
design, depends on the data, the search method performed in order to find 
the structure, and on the structure itself. The sample data set X is often 
used to "train" the classifier, that is to delineate the decision regions in 
S. In classification, we search for structure in an entire data space S. It is 
possible, though not necessary, to conduct this search by first clustering in 
a sample data set X. For details, see [33]. 

The concept of pattern classification may be viewed as a partition of 
feature space or a mapping from feature space to decision space. In classical 
cluster analysis, clustering algorithms produce hard partition of a given 
data set, resulting in well separated clusters. 

According to [33], hard partition can be defined in the following way, 
using a matrix representation. Let V cq denote the vector space of c x q 
real matrices over R, that is a real line. A matrix U = [Uij]j i = 1, ... ,Cj 

j = 1, ... ,q, where U E V cq , represents a hard c-partition of X if and only 
if its elements satisfy three conditions 

Uij E {O, I} for i = 1, ... ,Cj j = 1, ... ,q (6.14) 
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for j = 1, ... ,q (6.15) 

for i = 1, ... ,c (6.16) 

Row i of matrix U, say U(i) = (Uil, ... ,uiq), exhibits values of the charac
teristic function of the ith partitioning subset of X, where 

(6.17) 

is 1 if Xj belongs to the ith subset of X, and 0 if it does not belong to this 
subset (cluster). 

Equation (6.14) expresses the characteristic function (6.17), which can 
take only values 0 or 1, so the partitioning subsets are classical (crisp) sets. 
Equation (6.15) means that each data item Xj is in exactly one of the c 
subsets. Equation (6.16) ensures that no subset is empty, and no subset 
is all of X; in other words, 2 ~ c < q. Thus, the hard c-partition of X 
is represented by the matrix U, which contains exact information about 
this partition. The rows of this matrix correspond to the clusters, and the 
columns to the data items. The elements of the rows, taking values of 1, 
indicate the data items that belong to the corresponding clusters. It is easy 
to notice that each row can consist of at least one value equal to 1, but not 
all of them. Otherwise, this cluster is empty or contains all the data items; 
so the condition (6.16) must be fulfilled. Analogously, more than one value 
equal to 1, in a column, would suggest that the corresponding data item 
belongs to more than one cluster, which is not true in the hard partition. 
Therefore, condition (6.15) must be satisfied. 

The set of admissible solutions for the conventional (hard) cluster analysis 
problem with respect to X, defined above, is denoted by Me and expressed 
as follows 

M< ~ {U E V", I U;; E {D,l} Vi,j; t"'; ~ I Vj;D < t.u;; < q Vi} 

(6.18) 

Different solutions of the hard partition problem, represented by Equa
tion (6.18), in the form of the matrix U, can be obtained using clustering 
algorithms. An inherent difficulty in cluster analysis is the fact that various 
algorithms can suggest radically different substructures in the same data 
set. The most important requirement for solving a clustering problem is a 
suitable measure of "clusters" - what clustering criterion should be used? 
The choice of the clustering criterion can be rather problematic. No clus
tering criterion or measure of similarity will be universally applicable. Se
lection of a particular criterion is at least partially subjective, and always 
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open to question; see [33] for details. The clustering criteria, in general, 
refer to the mathematical properties of the data, such as distance, angle, 
curvature, symmetry, connectivity, intensity, etc. Similarity measures are 
thus building blocks for clustering criteria. However, in the simplest models, 
a measure of similarity can serve as a clustering criterion. 

The classical objective functional is perhaps the most intensively studied 
clustering criterion which generates hard clusters in X. Let Jw denote the 
functional, defined as 

q c 

Jw (U, v) = LLUij (dij )2 (6.19) 
j=li=l 

where 

1 

dij = d (Xj, Vi) = IIXj - viii = [t (Xjk - Vik)2]
2 

k=l 

(6.20) 

is a similarity measure, expressed by the Euclidean norm metric, and vector 

(6.21) 

is a set of c prototypical "cluster centers", Vi, for i = 1, ... , c, is the cluster 
center of the hard cluster represented by Ui E U. The "cluster centers" are 
treated as prototypes that characterize the clusters. They can be calculated 
according to the formula 

(6.22) 

so the name mean vectors is used for these prototypes. There are many 
synonyms for the word "prototype": centroid, vector quantizer (VQ), sig
nature, template, codevector, paradigm, exemplar, etc., but in the context 
of clustering it is usually referred as the cluster center of a crisp cluster 
[42]. 

One of the most popular algorithms for approximating the minima of 
the functional Jw, defined by Equation (6.19), is iterative optimization, 
performed by the algorithm, called the hard c-means or basic ISODATA 
method [116]; see also [33]. It can be presented in the following steps 

• Fix the number of clusters, c, such as 2 ~ c < q, and initialize the 
first matrix U(O) E Mc. The matrices U(l), for I = 1,2, ... , will be 
determined in the next steps. Besides, set the stopping condition, CL . 

• Calculate the c mean vectors {v~l)} using Equation (6.22). 
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• Update U(l), obtaining new memberships, for i = 1, ... , c, and 
j = 1, ... ,q, as 

u~l+l) = tJ l~k~c kJ {
I for d(l) = min {d(l)} 

tJ 0 otherwise 
(6.23) 

• Compare U(l) to U(l+1) in a convenient matrix norm. If 

IIU(l+l) - U(l) II ~ EL (6.24) 

then stop, otherwise set I = I + 1 and return to the second step. 

This algorithm is quite reasonable from an intuitive standpoint. We 
should guess the number c of the hard clusters, find their" centers" (proto
types), reallocate cluster memberships to minimize squared errors between 
the data and current prototypes, and stop when looping ceases to lower the 
value of Jw . 

A simple example of using the 2-means algorithm is illustrated in [33]. 

6.3.2 Fuzzy Clustering 

In 1969 Ruspini [414] suggested employing fuzzy sets, introduced by Zadeh 
[559] in 1965, in cluster analysis. He proposed a fuzzy partition to repre
sent the clusters in a data set. This idea has also been described in his 
other papers; e.g. [415], [416], [417], [418]. In 1973 Dunn [119] defined the 
first fuzzy generalization of the well-known ISODATA clustering algorithm 
[17]. It was called fuzzy ISODATA. Since 1973, this algorithm has been 
studied and improved by Bezdek, e.g. [28], [29], [30], [37], [31], [39], [45], 
[32], [47], [33], also Bezdek and Dunn [38], as well as Dunn [121], [120], 
[122], and known as fuzzy c-means. As Zadeh wrote, in the foreword to 
the book [33], " ... the work of Dunn and Bezdek on the fuzzy ISODATA 
(or fuzzy c-means) algorithms became a landmark in the theory of cluster 
analysis, that the relevance of the theory of fuzzy sets to cluster analysis 
and pattern recognition became clearly established. Since then, the theory 
of fuzzy clustering has developed rapidly and fruitfully ... ". It is worth 
mentioning that in 1966 a paper about fuzzy sets and pattern classifica
tion, with Zadeh as a co-author, was published [23]. Many publications 
concerning fuzzy clustering by Bezdek as well as others, appeared later; see 
e.g. [40], [43], [44]. 

Analogously to the definition of hard partition, by Equation (6.18), fuzzy 
c-partition is expressed as follows [33] 

Mfo ~ { U E V"" I U;f E [0, I] Vi,j; t, u'f ~ 1 Vj; 0 < t, u'f < q Vi} 
(6.25) 
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where X = {Xl, X2, ... ,Xq} is a data set, Veq is a set of real c x q matrices, 
c is an integer, such that 2 ~ c < q, and U is the matrix that represents 
the fuzzy partition. Note that the difference between Equations (6.18) and 
(6.25) is that, in the former, elements of U take only values of 0 and 1, 
but in the latter they take real values from the interval [0,1]. Thus, in the 
latter case, the function (6.17) denotes a membership function of a fuzzy 
subset, instead of the characteristic function (of a crisp subset) used in the 
hard partition. The fuzzy partition produces fuzzy subsets as clusters. In 
spite of the fact that, in this case, elements of matrix U take values of 
the membership functions, it is obvious that conditions (6.15) and (6.16) 
remain the same. Equation (6.15) means that the sum of each column 
is 1, so the total membership of each data item Xj in X is still 1. Since 
Equation (6.16) is satisfied, it is possible for each Xj, j = 1, ... ,q, to 
have an otherwise arbitrary distribution of membership among the c fuzzy 
subsets {Ui} partitioning X. There may, of course, be one or more columns 
of U which assign all of the membership of some Xj to a single Ui; indeed 
Me is clearly a finite subset of Mfe. More details, as well as examples, can 
be found in [33]. 

The fuzzy c-partition defined by Equation (6.25) can be realized by the 
fuzzy c-means clustering algorithm, which is a generalization of the hard 
c-means (or basic ISODATA method), described in Section 6.3.1. This 
algorithm is based on the generalized version of the functional expressed 
by Equation (6.19), and can be presented as follows, according to [28], [33]: 

• Fix the number of clusters, c, such that 2 ~ c < q, choose any inner 
product metric for RP, and fix m, such that 1 ~ m < 00. Initialize 
the first matrix U(O) E Mfe. The matrices U(l), for l = 1,2, ... , 
will be determined in the next steps. In addition, set the stopping 
condition, C L. 

• Calculate the c fuzzy cluster centers {v~l)} using the formula 

(6.26) 

for i = 1, . .. ,c. 

• Update U(l), obtaining new memberships, for 
j = 1, ... ,q, applying the following equation 

1, ... ,c, and 

(6.27) 

where dij = IIXj - Viii, and if the norm 11·11 is the Euclidean norm 
metric, then d ij is the similarity measure (6.20) between the data 



www.manaraa.com

6.4 Hybrid Learning 191 

item vector Xj and the cluster center value obtained in the preceding 
step . 

• Compare VCl) to V Cl+1) in a convenient matrix norm. If Equation 
(6.24) is fulfilled, then stop, otherwise set l = l + 1 and return to the 
second step. 

The fuzzy c-means clustering algorithm, presented above, reduces to the 
hard c-means method, described in Section 6.3.1, in the nonsingular case 
when m = 1 and the norm on RP is the Euclidean norm. The parameter 
m, introduced to the fuzzy version of the c-means method, expresses a 
degree of" fuzziness" . As m -+ 1, fuzzy c-means converges to hard c-means. 
Conversely, the larger m is, the" fuzzier" are the membership assignments; 
see [33], for the details. 

A simple example of using the fuzzy 2-means algorithm is also illustrated 
in [33], as well as much more information about both versions of the c-means 
algorithm. Moreover, other variants of these methods have been considered. 
Some of them realize slightly different types of partition of a given data 
set, for example the so-called possibilistic c-partition, as well as degenemte 
c-partitions, considered in [33]. 

As mentioned earlier, clustering algorithms are usually viewed as learn
ing methods (unsupervised, self-organizing learning). They can be com
pared with the learning algorithms of clustering neural networks (see Sec
tion 3.1.8). One way of combining the Kohonen's learning method with 
the fuzzy c-means clustering algorithm is presented in [46]. Kohonen's self
organizing algorithm has been extended to a fuzzy version, which can pro
duce both hard and fuzzy partitioning; see [332]. 

Clustering algorithms are called unsupervised learning, because they use 
unlabeled data vectors, which means that the learning input vectors are not 
associated with the classes to which they belong. These algorithms can solve 
a clustering problem, that is the identification of an "optimal" partition of 
the input data set, by grouping together unlabeled object data vectors that 
share some well-defined (mathematical) similarity, without being presented 
with examples of labeled data vectors, i.e. assigned to the proper classes. 
Another term, more recently used for this kind of clustering method, is 
self-organizing learning. 

It is worth noticing that the number of clusters is usually assumed to be 
known for a clustering algorithm, otherwise this value becomes part of the 
clustering problem. 

6.4 Hybrid Learning 

This section is devoted to hybrid learning methods, which are combinations 
of the algorithms described in Sections 6.1, 6.2, and 6.3, i.e. gradient, ge
netic, and clustering algorithms, respectively. Firstly, in Section 6.4.1, the 
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different types of hybridizations presented in the literature are mentioned. 
Then, applications of the hybrid learning methods to tuning weights of 
neural networks or parameters of neuro-fuzzy systems, and to rule gener
ating, are considered in Section 6.4.2 and 6.4.3, respectively. It should be 
emphasized that, in general, hybrid learning approach to neuro-fuzzy sys
tems can be viewed as a two-stage learning process, with a rule generation 
method at the first stage and a parameter tuning algorithm at the second 
stage. Both the former and the latter can be performed by use of hybrid 
methods as well. 

6.4.1 Combinations of Gradient Methods, GAs, and 
Clustering Algorithms 

There has been a great deal of research into combining neural networks, 
fuzzy systems, and genetic (evolutionary) algorithms in various schemes of 
their hybridizations. The integration of these techniques allows to create 
intelligent knowledge-based systems with learning abilities that take ad
vantage from the merits of each implemented method. 

The idea of using genetic algorithms (Section 6.2) in order to perform 
a neural network learning is presented e.g. in [526], [151]' [338]. The back
propagation algorithm (Section 3.1.3), which is a gradient method, is ap
plied in combination with GAs to train neural networks in [339], [21], [22], 
and others. In [64], this kind of hybrid learning is employed for fuzzy neu
ral networks (Section 3.2). A bibliography on applications GAs to neural 
networks, fuzzy systems, neuro-fuzzy systems, and fuzzy neural networks is 
available on the Internet [90], Section: Fuzzy Neural Networks, and in [91]. 

Different supportive and collaborative combinations of GAs and neural 
networks are described in [453], as well as in [452]. The latter paper also 
includes fuzzy systems. Examples of a synergy of GAs (or evolutionary 
algorithms) and neural networks are depicted in [468], [521]. In this section, 
GAs are very often understood in the broader sense, i.e. as evolutionary 
techniques; see Section 6.2.2. 

GAs are also powerful tools for structure (architecture) optimization of 
neural networks; e.g. [326], [257], [527]. The problem of architecture opti
mization, using GAs, is in fact, a problem of evolutionary learning, and the 
GAs, as mentioned earlier, are rather evolutionary algorithms. The learning 
of the architectures is part of a general evolutionary learning scheme, pre
sented in [555], which includes the learning of weights, and architectures, as 
well as the learning rules of neural networks, by evolutionary algorithms. 
In [218] GAs are applied in order to optimize the architectures of fuzzy 
neural networks. 

GAs (or evolutionary algorithms) for optimization of both weights and 
neural network architectures are presented in [163], [278], as well as in many 
other papers. With reference to neuro-fuzzy systems, GAs have been used 
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for optimizing the parameters of membership functions and for generat
ing fuzzy rules; see e.g. [191]. This problem can also be solved by hybrid 
learning methods, described in Sections 6.4.2 and 6.4.3. 

Similarly to neural network learning by GAs, in order to find optimal 
weight values, fuzzy systems are trained to adjust parameters of member
ship functions, e.g. in [241], [242], [486], [180], [20]. A bibliography on this 
subject is also available on the Internet [90], Section: Fuzzy Logic Con
trollers (Design, Learning, Tuning, Applications). Hybrid methods that 
combine GAs with gradient learning algorithms can be employed; see Sec
tion 6.4.2. In addition, GAs are often used in order to generate fuzzy 
IF-THEN rules of a fuzzy (neuro-fuzzy) system. Some details are presented 
in Section 6.4.3. 

Neuro-fuzzy-genetic combinations are considered in the literature and 
applied to hybrid learning; e.g. [303], [2], [420], [582], [223]. Moreover, these 
methods can also be combined with clustering algorithms. 

In [41], GAs are employed to optimize fuzzy clustering criteria (Sec
tion 6.3.2), and to perform a global search of the space of possible data 
partitions given a choice of the number of clusters (or classes) in the data, 
for determining the number of clusters. Other papers concerning similar 
applications of GAs to fuzzy clustering are e.g. [160], [557], which refer to 
genetic (or evolutionary) fuzzy clustering, and [478] which applies a GA for 
clustering and classification. Integration of neural networks with GAs and 
clustering is considered in [454]. A hybrid algorithm that is a combination 
of a GA and the k-nearest neighbor method of classification is presented in 
[250]. A bibliography concerning GA-based approaches to fuzzy clustering 
is available on the Internet [90], Section: Fuzzy Clustering. 

There are many examples of successful practical applications of different 
hybrid learning methods described in the literature, e.g. for use in control
ling intelligent systems in robotics and mechatronics [136]. 

With regard to hybrid learning methods, it is worth mentioning that 
such combinations as fuzzy genetic algorithms are also considered in the 
literature, e.g. [26], [297], [181], [390]. These are genetic algorithms that 
use fuzzy logic based techniques or fuzzy tools to improve their behavior. 
In these algorithms, some components may be designed with fuzzy logic 
tools. Examples are fuzzy operators and fuzzy connectives for designing 
genetic operators with different properties, fuzzy logic systems for control
ling the GA parameters according to certain performance measures, fuzzy 
stop criteria, and others [91]. FUzzy genetic algorithms understood, in a 
narrow sense, as genetic algorithms which breed fuzzy logic controllers as 
agent programs, are considered in [146). A bibliography concerning fuzzy 
genetic algorithms is available on the Internet [90), Sections: Fuzzy Genetic 
Algorithms and Fuzzy Optimization. Apart from those papers cited above, 
it includes e.g. [62], [449). 
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6.4.2 Hybrid Algorithms for Parameter Tuning 

In was written in Section 3.1.5 that the learning process in artificial neural 
networks can be viewed as an optimization task, that is, a "search" in a 
multidimensional parameter (weight) space for a solution which gradually 
optimizes a prespecified objective (criterion) function. It implies that GAs, 
which are optimization algorithms, can be applied in order to train neu
ral networks. They are even more suitable for this task than the back
propagation method, because they search for a global (near global) opti
mum, and do not usually stop at a local optimum. Similarly, neuro-fuzzy 
systems can be trained by GAs. However, as stated in Section 6.4.1 , the 
method suggested is a combination of both algorithms. First a GA is em
ployed to get a result pretty close to the global optimum, and then back
propagation to tune the weights or parameters of the neuro-fuzzy system 
to the globally optimal solution. Figure 6.4 illustrates this kind of hybrid 
approach. 

GA 

Back
propagation 

FIGURE 6.4. Hybrid learning: GA plus back-propagation 

Apart from the main disadvantage of the back-propagation algorithm, 
that is its tendency to get trapped at local optima, the speed of convergence 
also justifies the hybrid approach. The comparison study is presented in 
[256], [556]. The conclusion is the following: GAs converge very quickly to 
an approximate solution during the early stage and go slow at the end of 
the algorithm run. It is thus reasonable to employ a GA at the first stage 
to obtain quickly an initial value for the back-propagation method, which 
then modifies this value very fast to get the global optimal solution. 

As mentioned in Section 6.4.1 , membership functions of antecedent and 
consequent fuzzy sets (in fuzzy IF-THEN rules) are adjusted by GAs in 
[241], [242], [486], [180], [20]. Some other papers concerning this subject 
are cited in Section 6.4.3. The bibliography available on the Internet [90], 
Section: Fuzzy Logic Controllers (Design, Learning, Tuning, Applications), 
includes more reference items on tuning membership functions of a fuzzy 
rule base by means of genetic (evolutionary) algorithms. 

The gradient algorithms employed in order to adjust parameters of mem
bership functions (see Section 6.1) are alternative methods of learning 
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fuzzy (or neuro-fuzzy) systems. These algorithms are based on the steepest 
descent optimization technique, which is also incorporated into the back
propagation method applied to train neural networks. Since the idea of 
this kind of learning is the same for both fuzzy (neuro-fuzzy) systems and 
neural networks, each of these gradient algorithms suffer from the same 
drawbacks. The main disadvantage is the tendency to get trapped at lo
cal optima. Therefore, the hybrid learning method that combines a GA 
with the gradient algorithm used for a fuzzy (neuro-fuzzy) system, in the 
same way as presented in Fig. 6.4, is recommended. Instead of the back
propagation method, which tune weights of a neural network, the gradient 
algorithm is employed, using the initial values of the parameters obtained 
from the GA which is applied at the first stage. Thus the values of the 
parameters of membership functions (usually the centers and widths), de
termined by the GA, are sufficiently close to the global optimum solution, 
which is then quickly found by the gradient method of parameter tuning. 
This approach is presented e.g. in [420) for Gaussian and triangular mem
bership functions. 

6.4.3 Rule Generation 
Fuzzy IF-THEN rules, in fuzzy and neuro-fuzzy systems, are usually de
rived from human experts. However, several approaches have recently been 
proposed for generating these rules automatically, from numerical data, 
without domain experts. The method developed by Wang and Mendel 
[515), [514) is frequently employed. A collection of fuzzy IF-THEN rules 
is generated from input-output pairs. The input and output domain spaces 
are divided into subspaces (regions). A membership function is associated 
with each region, so the membership values of given numerical data in 
different regions are determined. Since each data pair generates one rule, 
the degrees that are calculated based on the membership values are as
signed to each rule in order to evaluate the rules. Then, the rule with the 
maximum degree is accepted from a group of conflicting rules. For details, 
see also [513). This method allows to incorporate into a table-lookup repre
sentation of a fuzzy rule base both the rules generated from numerical data 
as well as linguistic rules provided by a human expert. It is assumed that 
the linguistic rules have degrees assigned by the expert, depending on the 
importance of the rules. This method of generating fuzzy IF-THEN rules 
from numerical input-output data is implemented in the FLiNN software 
(Section 6.1.3). 

One example of various rule generation algorithms is presented in [12), for 
a single output fuzzy model. In this method, an input space is iteratively 
fuzzy partitioned by the ratio of 1/2 in the subregions where the value 
of the output inference error takes the maximum. This algorithm has been 
extended to the multiple output fuzzy model in [245), where three methods, 
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called the equal fixed grid method, 1/2n fixed grid method, and free grid 
method are compared. 

Other approaches to rule generation are proposed in the literature, mainly, 
with regard to control and classification rules. Most of them are briefly 
described in [329], which is a survey paper on this subject. The problem 
of fuzzy rule extraction from numerical data, for function approximation, 
is presented e.g. in [1]. Generating fuzzy rules for system identification 
and system modeling are studied in [412] and [516], respectively. The lat
ter refers to extracting important fuzzy rules from a given rule base to 
construct a "parsimonious" fuzzy model with a high generalization ability. 
A hybrid algorithm is considered. The rule extracting is done by a GA, and 
the Kalman filter is used in order to estimate parameters of the model. 

In [210] a rule generation method from numerical data, based on fuzzy 
partition of a two-dimensional pattern space by a simple grid, is proposed 
for classification problems. The fuzzy classification simultaneously employs 
all the fuzzy rules generated for several fuzzy partitions of different sizes. 
In this approach, the number of fuzzy rules is enormous, especially for 
high-dimensional pattern spaces. In order to reduce the number of rules, 
a GA-based method is applied in [211], [212]. GAs are also employed to 
generate fuzzy classification rules in [214], [213]. In these cases, compact 
fuzzy classification systems are automatically constructed from numerical 
data by selecting a small number of significant fuzzy rules using genetic 
algorithms. Since significant rules are selected and unnecessary rules are 
removed, this method can be viewed as a knowledge acquisition tool for 
classification problems. 

As mentioned in Section 6.4.1, GAs have been widely used for generating 
fuzzy IF-THEN rules, as well as for tuning membership functions of an
tecedent and consequent fuzzy sets (see Section 6.4.2). For example, in 
[499], [126], [280], GAs are employed for generating fuzzy IF-THEN rules. 
Both fuzzy rule generation and tuning membership functions are realized by 
GAs in [254], [450], [191], [373], [419]. The number offuzzy IF-THEN rules 
is also obtained by GAs in [364], [306], [296], [218]. Hierarchical structures 
offuzzy IF-THEN rules are determined by GAs in [466]. In these GA-based 
approaches, a collection of fuzzy IF-THEN rules is coded as individual rules. 
In [209], for instance, where fuzzy IF-THEN rules are generated by a GA 
for pattern classification problems, a collection of these rules is represented 
by a single chromosome. Another example of coding the whole rule base in 
a single chromosome is presented e.g. in [465]. 

As we can see, two main approaches are distinguished in the litera
ture on rule generation by GAs. The first one involves coding each single 
rule in the form of one chromosome, and in the second approach a collec
tion of rules is coded as one chromosome. The former approach refers to 
the so-called Michigan method [190], and the latter one to the so-called 
Pittsburgh method [473]; named after the universities in which they were 
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invented. These two approaches as applied to fuzzy classifiers are described 
e.g. in [76]. 

In the Michigan approach, chromosomes represent individual rules, and 
the collection of rules (rule base) corresponds to the entire population of 
the chromosomes. In the Pittsburgh approach, each chromosome encodes 
a whole rule base. The crossover operation used in this method serves to 
provide a new combination of rules and mutation creates new rules. Other 
approaches have also been proposed based on the Michigan and Pittsburgh 
methods, for example, the iterative rule learning approach, [91]. In this 
method, as in the Michigan one, each chromosome in the population rep
resents a single rule. However, unlike in the Michigan approach, only the 
best chromosome is accepted (considered as the solution), the remaining 
chromosomes in the population being discarded. The fitness of each chro
mosome is computed individually, without taking into account cooperation 
with other chromosomes. This substantially reduces the search space, be
cause in each sequence of iterations only one rule is searched for. For details, 
see [91], as well as [89]. It is worth mentioning that the latter paper refers 
explicitly to the GA as a hybrid learning algorithm. 

Apart from the papers on generating fuzzy rules by means of GAs, men
tioned above, there are many others in the literature, e.g. [179], [354], [537], 
[97], [108]. A bibliography on this subject is also available on the Internet 
[90], Sections: Fuzzy Logic Controllers (Design, Learning, Tuning, Appli
cations), as well as Fuzzy Classifier Systems, and Fuzzy Classification -
Concept Learning. 

Neural networks can be employed in order to determine fuzzy rules from 
training data. In this case, clustering neural networks are usually applied, 
for example the SOFM depicted in Section 3.1.8. Instead of neural net
works, fuzzy clustering algorithms (Section 6.3.2) may by used. This ap
proach, with Kohonen's SOFM proposed for generating linguistic rules, is 
presented in [389]; see also [347]. It is similar to the way of creating fuzzy 
IF-THEN rules by means of Fuzzy Associative Memory (FAM), introduced 
by Kosko [273]; and described in [347]. In this method, fuzzy rules are inter
preted as associations between antecedents and consequents. Thus, neural 
associative memories (Section 3.1.10) can be applied to store fuzzy rules. 
Neural networks, along with other methods of knowledge acquisition, can 
help by inducing the rules from examples. 

Generally, a FAM system consists of a bank of different FAM associations 
[273]. It should be noted that the table-lookup representation of a fuzzy 
rule base in the Wang and Mendel's method of rule generation, in fact, 
realizes a FAM bank based on both the generated rules and linguistic rules 
of human experts. 

In [74], [75] knowledge in the form of fuzzy IF-THEN rules is derived 
from a supervised learning neural network called fuzzy ARTMAP [73]. This 
neural network performs incremental supervised learning of recognition 
categories (pattern classes) and multi-dimensional maps for both binary 
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and analog input patterns. When applied to a classification task, the fuzzy 
ARTMAP network formulates recognition categories of input patterns, and 
associates each category with its respective prediction. The knowledge that 
the network discovers during learning is equivalent to IF-THEN rules which 
link fuzzy sets in their antecedent and consequent parts. At any point 
during the incremental learning, the network architecture can be trans
lated into a collection of fuzzy IF-THEN rules. However, the number of 
these rules is usually too big, so a prunning method is applied in order 
to reduce the rule-base, corresponding to the network architecture, by re
moving excessive recognition categories and weights. Thus the compact 
rule-base, which maintains the predictive accuracy of the full network, is 
extracted. 

The idea of using ARTMAP networks for rule generation, and employing 
the fuzzy ARTMAP in order to solve classification tasks, is developed by 
other researchers; see e.g. [495], [269], [469]. The rules associated with the 
network provide a readability of the classification results. A modified fuzzy 
ARTMAP for pattern recognition is proposed in [67]. An ART-based neural 
architecture for extracting membership functions from training data is used 
in [15] for fuzzy controllers in robotics. More examples can be found. 

Different methods of rule extraction from neural networks are briefly 
described in [329]. The connectionist networks presented in [144] and [448] 
are used for rule generation with regard to medical applications. The lat
ter is a multi-layer neural network for the headache detection. However, 
the number of rules extracted for a relatively simple problem is exceed
ingly large. A reasonably compact collection of rules with high predictive 
accuracy is obtained in [462]. Linguistic rules are also generated in [585], 
using a neuro-fuzzy framework. Logical rules are extracted from neural net
works in [114]. A recurrent neural network for rule extraction is presented 
in [80]. A survey on extracting rules from trained artificial neural networks 
is also done in [10]. Many papers on rule generating from neural networks 
are cited in [10] and [329]. The method developed in [135], as well as oth
ers, are mentioned in [329]. Some of them employ genetic algorithms, e.g. 
[308], [137]. 

6.5 Hybrid Learning Algorithms for Neuro-Fuzzy 
Systems 

This section is devoted to neuro-fuzzy systems trained by hybrid learning 
methods. At first, the neuro-fuzzy systems well-known from the litera
ture are briefly described (Section 6.5.1). Then, two hybrid learning al
gorithms proposed for rule generating and parameter tuning are depicted 
(Section 6.5.2), as well as results of their application to medical diagnosis 
problems (Section 6.5.3). 
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6.5.1 Examples of Hybrid Learning Neuro-Fuzzy Systems 

Different examples ofneuro-fuzzy systems are presented e.g. in [347]. Among 
others, three neuro-fuzzy systems that use hybrid learning for rule generat
ing and parameter tuning have been described. The first system is called 
NEFCON, which stands for NEuro-Fuzzy CONtroller. This is a system for 
control applications. The next one is NEFCLASS, which stands for NEuro
Fuzzy CLASSifier, and was designed for classification problems, or more 
precisely, for pattern recognition. The third system, called NEFPROX, 
which stands for NEuro-Fuzzy Junction apPROXimation, can be applied 
to function approximation. 

These systems are based on the generic Juzzy perceptron [347], [345], 
which is a kind of fuzzy neural networks (see Section 3.2). The generic 
fuzzy perceptron has the architecture of a classical MLP, described in Sec
tion 3.1.2, but the weights are modelled as fuzzy sets. The idea behind using 
the fuzzy perceptron is to provide a framework for learning algorithms to 
be interpreted as a system of linguistic rules, and to be able to use prior 
knowledge in the form of fuzzy IF-THEN rules. Interpretation of the per
ceptron architecture is possible in the form of linguistic rules, because the 
fuzzy weights can be associated with linguistic terms. 

Each of these systems can learn a rule-base and then tune the parameters 
of the membership functions. A fuzzy perceptron, like a classical MLP, is 
used for function approximation. Thus, the rule-base can be obtained as 
an approximation of an (unknown) function. The linguistic rules which 
perform this approximation, and define the system, are determined from a 
sequence of examples by learning. The fuzzy perceptron is composed of an 
input layer, one hidden layer, and an output layer. In contrast to classical 
MLPs, the connections are weighted with fuzzy sets instead of real numbers. 
Some connections always have the same weight, which means that there are 
shared weights, to make sure that for each linguistic value there can be only 
one representation as a particular fuzzy set. The connections between input 
neurons and hidden neurons are labeled with linguistic terms corresponding 
to the antecedent fuzzy sets. Connections that come from the same input 
neurons and have identical labels always carry the same fuzzy weight. These 
connections are called linked connections and their weight is called shared 
weight. The output layer is different in each neuro-fuzzy system. 

In the NEFCON system [346], [349], [348], for neuro-fuzzy control appli
cations, the input variables are state variables of a technical system which 
has to be controlled. The output variable is the control action applied to 
this system. The neurons of the hidden layer represent fuzzy rules in the 
form (2.94). This system has only one output neuron. 

In the NEFCLASS system [350], [352], [351], for classification, the rule
base approximates a function that represents a classification problem and 
maps an input pattern to proper class. This system does not use member
ship functions in the rule's consequents. 



www.manaraa.com

200 6. Hybrid Learning Methods 

The NEFPROX system [347], for function approximation, has output 
connections similar to that of the NEFCON, with shared weights, but more 
than one output neuron can be included in this system. 

Architectures of these systems and hybrid learning algorithms are pre
sented in [347]. 

The learning process for the NEFCON system consists of two stages: 
learning fuzzy rules and learning fuzzy sets. The first stage involves struc
ture (architecture) learning, the second is parameter learning. The knowl
edge base (rule base) of the system is implicitly given by the network ar
chitecture. As a matter of fact, there are several different learning methods 
for this system. The rule base can be given, or else obtained by learning. 
Then, the parameters are adjusted to modify the membership functions. 

Similarly, in the NEFCLASS system, after the rule base is created, the 
learning procedure tunes the membership functions of the antecedents of 
the rules. There are also different methods of rule generation and a sim
ple heuristic procedure for the modification of fuzzy sets. In this case the 
learning algorithm is simpler. 

In the NEFPROX system, some rules can be known and the remain
ing rules may be found by learning. However, the whole rule base can be 
generated by the rule learning algorithm, which selects fuzzy rules based on 
a predefined partitioning of the input space, the same as in the NEFCLASS 
system. This partitioning is given by initial fuzzy sets. As in NEFCON and 
NEFCLASS, the learning procedure for fuzzy sets is a simple heuristic. For 
details, see [347]. 

The rule learning methods for these systems may be incremental or decre
mental. The latter approach means that the algorithm starts with all the 
rules that can be created and then eliminates some rules. In the former, 
incremental learning, the number of rules can be increased by adding rule 
after rule; starting with an initial fuzzy partition for each variable. Decre
mental rule learning can be used if there are only a few input variables 
with not too many fuzzy sets. 

There are also other examples of neuro-fuzzy systems presented in the 
literature, but many of them do not employ any algorithms for rule generat
ing, so the rule base must be known in advance. They can only adjust 
the parameters of the antecedent and consequent fuzzy sets. One system 
of this kind is ANFIS (Adaptive-Network-based Fuzzy Inference System). 
This system implements the Takagi-Sugeno type of rules [494], which have 
a functional form (linear combination of input variables) of the consequent 
part; see Section 2.3.1. The architecture is five-layer feed-forward, where 
the first two layers are the same as in the basic architecture presented in 
Fig. 4.2. The next layers correspond to the consequent part of the rules. 
This system was introduced by Jang [225], [226], [227]. This is one of the 
first hybrid neuro-fuzzy systems for function approximation. For details see 
also e.g. [347]. Different methods have been proposed for tuning parameters, 
including hybrid learning. 
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6.5.2 Description of Two Hybrid Learning Algorithms for 
Rule Generation 

The neuro-fuzzy systems called NEFCON, NEFCLASS, and NEFPROX, 
described briefly in Section 6.5.1, can generate fuzzy IF-THEN rules using 
incremental or decremental rule learning. In addition, these systems are 
based on a fuzzy neural network (fuzzy perceptron). In this section, exam
ples of hybrid learning algorithms, which may be used for the neuro-fuzzy 
systems presented in this book, are outlined. This kind of algorithm deter
mines fuzzy rules when the number of rules is not known. Then, after the 
rule base is created, a supervised method for adjusting parameters can be 
employed. 

A clustering algorithm can be applied to rule generating but the number 
of clusters, which corresponds to the number of rules, usually needs to be 
fixed. Classical clustering methods are thus combined with some heuristic 
techniques in order to generate the correct number of rules. The algorithms 
proposed in [479], [440], [438], [439] are examples of this kind of method. 
They incorporate some ideas that come from LVQ and fuzzy c-means al
gorithms (see Sections 3.1.9, and 6.3.2, respectively), as well as heuristic 
methods. One of these algorithms can be presented as follows. 

Let Z = [Zl, ... ,zqf E Rqn be a given data set. 

• Fix D, B, and al. 

• Set the initial number of clusters c = 1, and i = 1, k = 1. 

• Create cluster Wi with data vector Zk E Wi and the cluster center 
Vi = Zk. 

• For k = 2, ... ,q, check the Euclidean distance between data vector Zk 

and the center Vi of cluster Wi, according to the following condition 

(6.28) 

• If inequality (6.28) is satisfied, check the distance between data vector 
Zk and each cluster different from Wi, if any exist, according to the 
condition 

(6.29) 

for j =I- i, where j = 1, ... ,c, and W={W1 , ... ,We} is a set of 
clusters. The distance, d, between data vector Zk and cluster Wj is 
defined as the minimum of the Euclidean distances between vector 
Zk and each element belonging to cluster Wj. 

• If inequality (6.29) is fulfilled, assign data vector Zk to cluster Wi 
and update the cluster center Vi using the formula 

(6.30) 
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where 0i E [0,1] is the learning rate, which decreases with each 
iteration of the algorithm, depending on the number of elements in 
the cluster. 

• For k = 1, ... ,q, and Zk tt. Wi, do: 

For i = 1, ... ,c, check the distance between data vector Zk and cluster 
Wi, according to the condition 

(6.31) 

If inequality (6.31) is satisfied, check the distance between data vector 
Zk and each cluster created which differs from Wi, using Equation (6.29). 
If this condition is fulfilled, assign vector Zk to cluster Wi and update 
the cluster center Vi by formula (6.30). Otherwise, change the value of the 
constant B as follows 

(6.32) 

and return to the second step of this algorithm. 
If inequality (6.31) is not fulfilled, increase the number of clusters, c, 

increase index i, and return the third step of the algorithm in order to 
create a new cluster with the initial center vector Zk. 

As a result of this algorithm, we obtain the number of clusters, c, and 
the clusters WI, ... ,W c, with the values of their centers: VI, ... ,V c. 

Note that Equation (6.30) is the same as the updating formula (3.30) in 
the LVQ algorithm described in Section 3.1.9. 

Another algorithm, presented in [479], incorporates a similar idea for 
creating new clusters and updating their centers, but without using con
stant B. This method creates clusters, starting with a very small value of 
D. Thus, the number of clusters obtained in the first iteration of this algo
rithm is very large, almost the same as the amount of data. Then, in the 
proceeding iterations the data vectors are replaced by the cluster centers 
and the value of D increases, resulting in lower number of new clusters. For 
the data set Z = [ZI, ... ,zqf E Rqn, this algorithm can be presented in 
the following steps: 

• Fix D, T, and 01. 

• Set c = 1, and i = 1, k = 1. 

• Create cluster Wi with data vector Zk E Wi and the cluster center 
Vi = Zk· 

• For k = 2, ... ,q, check the Euclidean distance between data vector 
Zk and the center Vi of cluster Wi, according to condition (6.28). 
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• If inequality (6.28) is satisfied, include data vector Zk into cluster 
Wi and update the cluster center Vi using formula (6.30), where, in 
a similar way to the previous algorithm, the learning rate, O!iE [0, 1], 
decreases with each iteration. 

• For k = 2, ... ,q, and i = 1, ... ,c, if Zk ¢ Wi, create new clusters by 
returning to the third step with c : = c + l. 

• If the stopping criteria (for example, a desired number of clusters) 
are not met, increase the value of D as follows 

D:=D+T 

and replace the data set Z by the prototypes (cluster centers) Vi, for 
i = 1, ... ,c; then return to the first step. Hence, the cluster centers 
play the role of data vectors. Otherwise, stop. 

The algorithm can be terminated using different stopping criteria. It is 
possible to apply a desired number of clusters if this is known. In practice, 
a neuro-fuzzy system is usually constructed based on the fuzzy IF-THEN 
rules that correspond to the clusters obtained, and the performance of this 
system is tested. In this way, we can decrease the number of rules (clusters) 
in subsequent iterations of the algorithm until the system works properly. 

Different heuristic techniques, as well as various modifications of the 
methods proposed, may be introduced to produce clusters when their num
ber is not fixed and must be find by the algorithm. 

The fuzzy rules generated from the methods described above are ex
pressed in the form (2.94), where membership functions of the fuzzy sets 
can be Gaussian or other shaped functions with centers that are compo
nents of the vector centers Vl, ... ,Vc obtained from the presented algo
rithm. The width parameter vector, O"i, for i = 1, ... ,c, can be detennined 
using the following formula 

(6.33) 

where O"ij and Vij are components of the vectors O"i and Vi, respectively, 
for i = 1, ... ,c; the components of matrix U, denoted as Uik, are calcu
lated according to Equation (6.27), which means that vectors Vb ... ,Vc are 
treated as the centers of fuzzy clusters. Thus, the idea of fuzzy c-partition 
(Section 6.3.2) is incorporated. A formula similar to Equation (6.33) is used 
in [81]. 

The architecture of the neuro-fuzzy system corresponding to this rule 
base can be the same as that presented, for example, in Fig.4.2, where 
elements of the first layer realize the antecedent membership functions and 
the third-layer parameters are center values of the consequent membership 
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functions, with the centers and width parameters obtained from the algo
rithms described above. The number of rules, which is equal to the number 
of clusters, N = c, determines the number of elements in the second layer 
of the architecture. 

The parameters of the membership functions can be tuned by a gradient 
method, similarly to that depicted in Section 6.1.2; see formulas (6.11), 
(6.12), (6.13). 

The algorithms of rule generating presented in this section can be applied 
to the multi-segment architecture proposed in [479], and also considered in 
[480]. Each segment of this architecture is a neuro-fuzzy system that is 
responsible for recognizing only one class when the system is solving a 
classification task. In this case, the latter of the two clustering methods 
described above is especially suitable. It is worth mentioning that the data 
should be scaled before use in this algorithm. 

6.5.3 Medical Diagnosis Applications 

The algorithms described in Section 6.5.2 have been used to generate fuzzy 
IF-THEN rules in order to solve various medical diagnosis problems. One 
of these is the case of heart disease. Data from the Cleveland Clinic Foun
dation are available on the Internet [324]. The published experiments with 
the Cleveland database mostly concentrate on simply attempting to deter
mining presence or absence of the disease. They use 14 attributes which 
represent features such as age, sex, chest pain type, resting blood pres
sure, serum cholestorol, fasting blood sugar, resting electrocardiographic 
results, maximum heart rate achieved, exercise induced angina, etc. The 
final attribute is the diagnosis of heart disease, expressed as values 0 or 
1. This is the predicted attribute, which depends on the values of the 13 
previous attributes. The data that have been used constitute 297 vectors 
with different values of the 14 attributes. In order to solve the diagnosis 
problem, the neuro-fuzzy system represented by the architecture shown in 
Fig.4.2 has been employed, with the number of elements in the second 
layer determined by the algorithm described in Section 6.5.2; i.e. 26 rules. 
The number of inputs is equal to the number of attributes, that is 14. In 
order to tune the parameters of the membership functions, the data set 
was split into 257 items of training data and 40 vectors of testing data. 
The gradient learning method presented in Section 6.1.2 was applied. The 
result was very good, with only one mistake [440]. 

Another medical diagnosis problem that can be solved by the algorithms 
described in Section 6.5.2 is breast cancer. The data available on the Inter
net [324] come from the University of Wisconsin Hospitals. The database 
contains information concerning 10 attributes, such as clump thickness, 
uniformity of cell size, uniformity of cell shape, marginal adhesion, single 
epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, mitoses. 
The final attribute concerns the diagnosis of breast cancer, with two dis-
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tinguished values for benign and malignant cases of the disease. The data 
set contained 487 different data vectors, each composed of 10 components, 
corresponding to the attributes. This data set was divided into 387 learn
ing vectors and 100 testing vectors. The same architecture was employed, 
with 36 elements in the second layer, determined by the number of rules 
generated, and 9 inputs. The same gradient algorithm was applied to tune 
the parameters of the membership functions. In this case, for the testing 
sequence of 100 vectors, there were 4 mistakes, so the result is also good, 
similar to or even better than the results obtained by other methods [324), 
[536). 

In order to solve problems in which there are more than two different 
classes to be distinguished, for example the case of heart disease with 
several kinds of diagnosis, the multi-segment architecture is recommended. 
This consists of the neuro-fuzzy systems which are called segments. When 
applied to classification tasks, the number of segments is equal to the num
ber of discerned classes. Each segment is trained to recognize a particular 
class, so it should decide whether an input data vector belongs to this class 
or not. There are two possible ways of realizing a multi-segment system of 
this kind; these are described in [479], [480], and in [481], [441], respectively. 

In the former, the first segment receives all the input data vectors entered 
into the multi-segment system. If the data vector is identified as a member 
of the class associated with this segment, the output value of the segment 
differs from zero and indicates the class, otherwise the output value equals 
zero. If the input data is discarded as not belonging to the first class (as
signed to the first segment), it is fed into the input of the second segment, 
which is responsible for recognizing the second class. If this segment does 
not accept this data vector as a member of its class, the data is entered 
into the third segment, and so on. In this way, the second segment does not 
receive the input data identified with the class associated with the first seg
ment. Similarly, the data vectors accepted as members of the second class 
do not need to be transmitted to the input of the third and subsequent 
segments. The output value of the multi-segment system, for a given input 
data vector, is equal to the output of the segment which has identified this 
input vector as belonging to its class. 

In the latter system, all the input data vectors are entered into every 
segment in parallel. The output value of the segment which accepts the 
input vector as a member of its class differs from zero, while the output 
values of the remaining segments equal zero. The output values of the 
system are equal to the non-zero output values of the segments which have 
accepted the corresponding input vectors as members of their classes. A 
multi-segment system of this type is illustrated in Fig. 6.5. As with the first 
way, it is composed of M segments and an output unit which transmits the 
output value of the appropriate segment to the output of the system. This 
value represents the class associated with the input data vector. It should be 
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noted that the parallel multi-segment system performs classification faster 
than the former system. 
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- .... -
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M 

FIGURE 6.5. The multi-segment neuro-fuzzy system 

The number of segments in the multi-segment architectures can equal 
the number of classes minus one, because the last segment is not necessary 
since the previous ones should identify all the input data vectors that do 
not belong to the class associated with the last segment. Thus it is ob
vious that the class which is not assigned to any segment contains those 
input data vectors which have not been accepted by the segments of the 
architecture as members of their classes. Of course, the architecture can 
include this (additional) segment, in order to make sure that the extant 
segments perform classification correctly. In this case, the output values of 
the multi-segment system always differ from zero, if not this means that 
the input data does not belong to any classes represented by the segments. 

Each segment of the multi-segment architectures presented in the above 
cited literature is a classical neuro-fuzzy system with the modifications 
proposed in [479]. An additional layer has been added (before the defuzzi
fication layers) to the architecture shown in Fig. 4.2. This layer contains 
elements that realize sigmoidal functions with parameters corresponding 
to degrees of rule activation. Moreover, the so-called zero rule (with the 
value of the consequent fuzzy set equal to zero) is taken into account, so 
the additional parameter representing the degree of activation of this rule is 
entered into the second adder of the defuzzification layer. Of course, other 
architectures can be proposed as segments of multi-segment systems. 

As mentioned earlier, each segment is trained to recognize those data 
items that belong to its class and identify other data vectors as not be
longing to its class. The rule bases of the segments differ from each other 
in numbers of rules and parameter values which are obtained as a result of 
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a learning process. Thus it is obvious that the architectures of the neuro
fuzzy segments, which reflect the collections of rules, are different. Hybrid 
learning, composed of a rule generating algorithm and a parameter tuning 
method, can be employed. In the medical applications, described above, 
the algorithms presented in Section 6.5.2, especially the second one, deter
mined the rules. Then the gradient algorithms, depicted in Section 6.1.2, 
were used to adjust the center and width parameters of the Gaussian mem
bership functions. If the center parameters are properly chosen during the 
rule generating process, only the width parameters need be tuned by the 
gradient algorithm. 

One advantage of applying neuro-fuzzy systems in the form of multi
segment architectures is clear even in the case of only two classes. It is much 
easier to train a system that incorporates a smaller number of rules in its 
rule base. It is obvious that each segment needs less rules than the classical 
neuro-fuzzy system constructed to identify all classes. Moreover, the multi
segment system is suitable for realizing an intelligent system that can learn 
from mistakes [441], by modifying the architecture of a particular segment 
based on the mistake observed. This system improves its performance, so 
the longer it works the less mistakes occur, and eventually it should produce 
only correct answers. The systems of this kind can be especially helpful as 
medical expert systems, with the possibility of many different decisions 
concerning a diagnosis. 
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Intelligent Systems 

The neuro-fuzzy architectures and hybrid learning procedures, described in 
the previous chapters, can be employed to create so-called intelligent com
putational systems. A general schema of these kind of systems is presented 
in this chapter. Intelligent systems usually refer to the field of Artificial In
telligence (AI) or Computational Intelligence (CI). The difference between 
these branches of Computer Science is explained in Section 7.1. Then, ex
pert systems are outlined (Section 7.2). Intelligent computational systems 
(Section 7.3) can be viewed as a special type of expert systems. Finally, in 
Section 7.4, perception-based systems are considered as intelligent systems 
in AI. 

7.1 Artificial and Computational Intelligence 

AI deals with methods, and systems for solving problems that normally 
require human intelligence [18], [79], [535], [147]. The main goal of AI is 
to construct computer based systems that solve tasks which are routinely 
performed by human beings. 

There are many definitions of AI. The following explanation can be found 
in Webster's dictionary: " AI is the branch of computer science that studies 
how smart a machine can be, which involves the capability of a device to 
perform functions normally associated with human intelligence, such as 
reasoning, learning, and self improvement"; see [591], and also [36]. The 
ability to reason, which is a very important aspect of human intelligence, is 
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called the commonsense knowledge by AI researchers [147], [316]; see also 
[546]. 

AI was started in 1950s, after the publication of Turing's famous article 
[504], which described the Turing test, and another influential paper by 
Shannon [464] on the possibility of computer chess. However, the name 
artificial intelligence was not used until the Dartmouth Conference in 1956 
at Dartmouth College in Hanover, New Hampshire. This was probably the 
first time that the term artificial intelligence was proposed, in spite of the 
fact that it seemed rather contentious [79]. Earlier, the works of Turing and 
Shannon referred to computer intelligence. The Turing test was proposed to 
put forward the idea that computers could be programmed so as to exhibit 
intelligent behavior. In fact, a computer chess program seems to confirm 
this idea. 

As mentioned earlier, many definitions of AI have been suggested since 
this term was introduced. A very short one, presented in [79], states: "AI 
is the study of mental faculties through the use of computational models" , 
and explains that this definition may be viewed as the use of computers to 
study the mental faculties of people, such as vision or natural language. It 
should be noted that on this understanding of AI, the word computational, 
which is related to computers, was emphasized. 

Computational Intelligence was a new term suggested as a title for con
ferences that comprised neural networks, fuzzy systems, genetic algorithms, 
as well as other similar subjects [586]. There is also a journal entitled Com
putational Intelligence (Blackwell). In the preface to the book [586], which 
contains contributions to the 1994 IEEE World Congress on Computa
tional Intelligence, it is stated that originally the congress had "intelli
gent systems" instead of "computational intelligence" in its title. However, 
recognizing that intelligent systems had a specific meaning in the AI com
munity, so the contents of the congress was not consistent with this mean
ing, the title was changed. In the first paper presented in [586] the difference 
between CI and AI is explained by Bezdek [36]. He introduced this new 
term, and had earlier discussed the relationship between neural networks, 
pattern recognition and intelligence in [35]. The article published by Marks 
[314] also concerns computational and artificial intelligence. Later, publi
cations on CI, by other authors, appeared, e.g. [133], [387]. Now, many 
conferences and books have the term computational intelligence in their 
titles. 

The term computational in [36] refers to mathematics + computers, which 
is similar to the definition of AI presented above. However, it is obvious 
that both CI and AI use computers, the "computational" in the sense 
of CI means that the computational systems depend on numerical data, 
while intelligent systems in AI apply a symbolic form of the data, and 
incorporate knowledge in a way that the systems in CI do not. Bezdek's 
definition of CI is as follows: " A system is computationally intelligent when 
if deals only with numerical (low-level) data, has a pattern recognition 
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component, and does not use knowledge in the AI sense; and additionally, 
when it (begins to) exhibit (i) computational adaptivity; (ii) computational 
fault tolerance; (iii) speed approaching human-like turnaround, and (iv) 
error rates that approximate human performance". According to Bezdek, 
an artificially intelligent system is a CI system whose added value comes 
from incorporating knowledge in a non-numerical way. 

The definition of CI presented in [314] focuses on the contributing tech
nologies: " ... neural networks, genetic algorithms, fuzzy systems, evolutio
nary programming, and artificial life are the building blocks of CL" 

The following definition of CI is given in [133]: " ... These technologies 
of neural, fuzzy and evolutionary systems were brought together under the 
rubric of Computational Intelligence, ... to generally describe methods of 
computation that can be used to adapt solutions of new problems and do 
not rely on explicit human knowledge." 

When the concept of CI arose the methods mentioned above, as well as 
their combinations, were proposed as a way of creating" intelligent systems" 
that were, of course, different from the systems which had been constructing 
in AI. In particular, the connectionist (neural) expert systems significantly 
differ from classical expert systems (see Section 7.2). The idea of using 
the term computational comes from an earlier paper written by Bezdek 
[34], where he compared pattern recognition, neural networks, and artifi
cial intelligence, based on three levels: numeric, symbolic, and organic. The 
symbolic level is associated with the term" artificial" , that is non-biological 
(man-made). The organic level refers to " biological" ,and the numeric level 
corresponds to "computational". The same approach is presented in [35]. 
Thus the term computational is most closely related to connectionist net
works, which process numerical data and do not possess a knowledge base in 
the form of IF-THEN rules. FUzzy systems are different since they use lin
guistic fuzzy rules and accept symbolic (linguistic) values. However, fuzzy 
systems with a fuzzifier and a defuzzifier, as well as neuro-fuzzy systems, 
employ numerical (crisp) input and output values, but they have a collec
tion of rules as their knowledge base. Of course, they are different from the 
systems developed in AI. 

Recently we have observed the tendency to create more hybrid systems 
that combine neural networks, fuzzy systems, genetic algorithms, as well as 
classical expert systems together; This is mentioned in Section 7.2.2. Thus 
the new trend leads to the building of intelligent systems in the sense of 
AI, employing methods used in CL 

It should be added that the methods applied in CI to create intelligent 
systems, for example, neural networks, fuzzy systems, genetic algorithms 
belong to the area called Soft Computing [573], [549], [443], [232]. In con
trast to hard computing, the soft computing methods deal with uncertainty, 
impreciseness, and vagueness. The probability theory and chaotic theory 
are also assigned to this field. 
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7.2 Expert Systems 

Expert systems [221], [518] are the main branch of applications of AI. 
Knowledge engineering, which is the research area concerned with the ba
sic technology for construction of expert systems, can be called practical 
artificial intelligence since it is a field of research oriented towards appli
cations of AI, and expert systems are concrete products in this area [497]. 
In addition to classical expert systems, the soft computing methods, i.e. 
neural networks, fuzzy systems, as well as genetic algorithms, have been 
recently employed to perform various tasks of expert systems or to support 
these systems. 

7.2.1 Classical Expert Systems 

Expert systems are often called rule-based systems or knowledge-based sys
tems; see e.g. [79], [355], [54], [282]. Typically an expert system consists of 
an inference engine and a knowledge base. Figure 7.1 shows the basic struc
ture of an expert system. The explanation facility block in this structure 
represents the tools, developed in most expert systems, that allow the in
ference process performed by the system to be explained. This means that 
users can understand questions being asked, as well as inferred conclusions. 
The interface serves to communicate with users and knowledge engineers 
whose job is knowledge acquisition. Knowledge engineers gather knowledge 
from human experts and deliver it to the system. As we see, the main 
part of the system is the block that contains the knowledge base to store 
the knowledge and the inference engine for using it to infer conclusions 
(answers) to the questions and data provided by users. 

One of the best known expert systems, produced in 1970s, is the medical 
diagnostic system called MYCIN [467]. This is a computer program de
signed to diagnose and then prescribe treatment for an infectious disease, 
in particular, a bacterial infection of the blood. The system should decide 
what bacterium is causing the disease (or what are the most likely possi
bilities), and then - based upon this decision - determine what antibiotic 
to give the patient to kill the bacterium. 

Many different medical diagnosis expert systems have been proposed in 
addition to the MYCIN program. An example is CADUCEUS, a system 
created in order to diagnose diseases of internal organs, like heart, lungs, 
and liver; see [401]' [399], [400]. Moreover, a large number of expert systems 
for other applications have been constructed. One of them is PROSPEC
TOR, a well-known program, designed to predict the location of ore de
posits [118], [115]. These two examples represent the first group of expert 
systems introduced in 1970s. Since then, a great number of others have 
been proposed. 

The MYCIN expert system has been put to use for medical diagno
sis and treatment, but in its development it has been tied to a system 
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called TEl RES lAS (see [104]), and furthermore, in 1980, the expert sys
tem called EMYCIN was built. This system can be widely employed and 
is not restricted to medical diagnosis applications. 

Knowledge 
base 

Inference 
engine 

Explanation 
facility 

FIGURE 7.1. Basic structure of an expert system 

Most expert systems available for use are "shells". They consist of the 
software programs required, but do not contain any knowledge bases. Thus 
users can introduce the knowledge appropriate for the problems to be solved 
by the systems. The big advantage of these shells is that they can be em
ployed in various applications, without the necessity of creating a soft
ware system specific for each problem. Since this kind of systems puts the 
knowledge of experts or the experience of specialists into the memory of a 
computer and uses it, such a system is called an expert system. 

The knowledge in knowledge-based systems (expert systems) is usually 
expressed in the form of IF-THEN statements; more precisely: IF premise 
THEN conclusion. 

The EMYCIN expert system was constructed as a shell. Therefore, the 
possibility of its application goes beyond medical diagnosis problems. If 
the knowledge of an expert in any field can be expressed in the form of the 
IF-THEN statements, the system may be used. The EMYCIN stands for 
Empty MYCIN, which means the expert system shell for the MYCIN. 
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7.2.2 Fuzzy and Neural Expert Systems 
The role of fuzzy sets is well understood, and evidence of its use is wide
spread, including in expert systems, for example in medical diagnostic sys
tems, like MYCIN. The inference method employed in the MYCIN system 
has had a large influence on the handling of uncertain knowledge in expert 
systems. The MYCIN system does not take a strictly Bayesian approach 
(see e.g. [116]) but applies a modified version of this method for expert sys
tem reasoning [117], with so-called certainty factors. The PROSPECTOR 
system, for example, uses this modified version of the Bayesian approach 
but explicitly for probabilities. 

An example of an expert system, with the knowledge expressed as state
ments in the form "IF A THEN B", where A and B are fuzzy propositions, 
and those in which the veracity of these statements are not complete, is 
the expert system called CADIAG, developed by Adlassnig et al. [3). The 
name of this system stands for Computer Assisted DIAGnosis, and relates 
to medical diagnosis applications. This is a consultation system to support 
a diagnostic process in internal medicine. This system is able to propose 
diagnoses based on symptoms and, if possible, to prove or exclude them. 
If necessary, suggestions for subsequent medical investigations are offered. 
New versions of CADIAG, as well as other expert systems that use fuzzy 
knowledge bases designed for medical applications, are presented in [4). 

Another example of an expert system that employs a knowledge base 
expressed in the form of fuzzy IF-THEN rules is the system called SPERIL. 
This is an expert system developed to asses damage to buildings after 
earthquakes [219), [220). Based on the development of the SPERIL system, 
a practical consulting system for assessing earthquake damage for non-life 
insurance companies in Japan has been constructed. Information about 
these systems can be found in [497). The inference process in the SPERIL 
expert system is based on Dempster-Shafer theory [107], [463], for handling 
uncertainty for which Bayesian probability was inappropriate. It is worth 
mentioning that the Dempster-Shafer's idea of upper and lower probability 
includes Bayesian probability as a special case (see e.g. [497]). In order to 
use a knowledge base expressed by fuzzy sets, the Dempster-Shafer theory 
has been extended to fuzzy sets without losing its essence. 

Expert systems with the inference based on the Dempster-Shafer theory 
can also be developed for medical diagnosis applications; see e.g. [482], 
[483]. These systems deal with knowledge accompanied by uncertainty and 
fuzziness. 

As explained in Section 7.2.1, an expert system is a computer-based 
system that emulates the reasoning process of a human expert within a 
specific domain of knowledge. In fuzzy expert systems, the knowledge is 
usually represented by a collection of fuzzy IF-THEN rules; see e.g. [236], 
[161]' [455]. A fuzzy inference system based on IF-THEN rules is practically 
an expert system if the rules are developed via expert knowledge [27]. It is 
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worth noticing that fuzzy expert systems are software oriented, while fuzzy 
controllers are often built as hardware applications. 

Different methods for handling uncertainty and vagueness in expert sys
tems are presented in [282]. Approximate reasoning in expert systems is 
discussed e.g. in [571], [158]. 

Genetic algorithms (see Section 6.2) can be employed to create the 
knowledge base in fuzzy expert systems, as well as for knowledge filter
ing [391], [580]. A bibliography on combinations of GAs and fuzzy expert 
systems is available on the Internet [90], Section: Fuzzy Expert Systems. 
Neural networks are also applied to expert and fuzzy expert systems, see 
e.g. [391]. 

Neural networks can be used as an alternative to conventional rule-based 
expert systems [584]. Neural networks can solve various classification prob
lems, particularly in diagnosis, pattern recognition, etc. In contrast to clas
sical expert systems, they acquire knowledge without extracting IF-THEN 
rules from human experts being based on training data. After the learning 
process, neural networks have the potential to perform like expert systems. 
The learning ability of neural networks might ease the knowledge acquisi
tion bottleneck that impedes the development of classical expert systems. 

Connectionist expert systems have been considered mainly for medical 
diagnosis [144], [199], [448], as well as for fault diagnosis of an automobile 
engine, for instance; see [313], and also [584]. The medical diagnosis systems 
are neural networks, in which the input layer neurons take the information 
about selected symptoms of a patient's diseases, expressed by numerical 
values. The number of diseases that the system can recognize equals the 
number of output layer neurons. Special care needs to be taken in order 
to choose the number of hidden layer neurons. The connectionist expert 
system for the fault diagnosis task is a single-hidden layer neural network 
trained by the back-propagation algorithm. This neural network-based ex
pert system can identify 26 different faults such as a shorted plug, an open 
plug, a broken fuel injector, etc. The training sequence consists of 16 sets 
of data for each failure, each of the sets representing a single engine cycle. 
A total of 16 x 26 data vectors with 52 components in each vector has been 
employed for training, and the problem of defective engine diagnosis has 
been successfully solved; see [313] or [584], for more details. Several exam
ples of existing neural networks for medical diagnosis and fault diagnosis 
are presented in [312]. 

A drawback of neural networks is the lack of explanation facilities, typical 
for expert systems. Thus a neural network expert system is usually unable 
to inform users about the reasons for the decisions made by the system. 
However, there are some ideas to solve this problem, for instance, genetic 
algorithms can be used to design the explanation facilities [124], [123]. 

Fuzzy systems and neural networks are both soft computing approaches 
to modelling expert behavior [573]; see also [347]. The purpose is to imitate 
the actions of an expert who solves complex tasks. This means that we do 
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not need to use a mathematical model of the problem that we want to solve 
but we examine how the expert deals successfully to obtain the solution. 
A learning process of neural networks or neuro-fuzzy systems can be part 
of knowledge acquisition. The learning method used is usually supervised, 
because it looks for examples provided by a teacher (expert), mostly in the 
form of a training data sequence. Thus the learning process is performed 
based on trial and error guided by an error signal that tells how well the 
system works. Fuzzy systems employ fuzzy IF-THEN rules that can be 
gathered from examples of this kind. Thus, in this way, the knowledge base 
expressed in linguistic rules is acquired. In this sense, fuzzy systems, neural 
networks, and neuro-fuzzy systems are suitable tools for modelling expert 
behavior. It is worth emphasizing that classical expert systems, which try to 
model the knowledge or the behavior of human experts, usually by means of 
logical representations based on symbolic structures, encounter trouble in 
dealing with uncertainty and vagueness [110]. As mentioned earlier, tradi
tional expert systems employ probability theory, in particular the Bayesian 
approach, for handling of uncertain knowledge. It should be explained that 
on this understanding of modelling expert behavior, the intention is not 
to model an expert exactly, but to create a system that produces results 
which are similar to the decisions made by a real expert. More information 
about expert systems of this kind can be found in [347]. 

In addition to the role of neural networks as an alternative to the con
ventional rule-based systems, they can be combined with classical expert 
systems to create more powerful hybrid systems [319], [320], [321]. Such 
integrated systems have proven to be useful for developing real-world ap
plications, including diagnostic systems, as well as control systems, also in 
robotics. This kind of integrated systems may be considered as intelligent 
agents in multi-agent systems (see e.g. [522]). In the literature, cited above, 
various configurations of expert system - neural network couplings are pre
sented, and practical examples of the neuro-expert systems employed in 
industry are described. 

A neural expert system with a fuzzy input is depicted in [168]. This 
means that fuzzy neural networks (see Section 3.2) play the role of fuzzy 
expert systems. It has been shown [170] that neural networks with fuzzy 
signals and fuzzy weights are ideal for modeling fuzzy expert systems with 
fuzzy IF-THEN rules. The fuzzy neural networks, after successful learning, 
operate as fuzzy expert systems [55], [65]. This kind offuzzy expert systems 
are also described in [56]. In the earlier papers, a computational equivalence 
offuzzy expert systems and classical neural networks is shown [63]. Similar 
equivalence concerns hybrid neural networks, which are in fact, fuzzy in
ference neural networks [59]. Thus neural networks, fuzzy neural networks, 
fuzzy inference neural networks, and fuzzy systems, can be viewed as alter
natives for classical expert systems. Besides, all of them can be combined 
together to create more powerful intelligent systems. 
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A study of neuro-fuzzy expert systems may be found in [331]. These 
systems incorporate fuzzy reasoning into connectionist expert systems. In 
[333] the fuzzy MLP, proposed in [372], and mentioned in Section 3.2, has 
been applied to design such connectionist (neural) systems. The presented 
system can handle uncertainty and/or impreciseness in the input data, in
ferring, for a classification problem, output class membership values. The 
system is able to justify its decision, to the user, in the form of IF-THEN 
rules. It is worth emphasizing that, in this case, the rules are not explicitly 
included in the knowledge base but are generated from the learned connec
tion weights, if the system is asked by the user for explanations. 

7.3 Intelligent Computational Systems 

In Section 7.1, the difference between AI and CI has been explained. Ac
cording to Bezdek [36], the "intelligent systems" created by means of neural 
networks, fuzzy systems and genetic algorithms (as well as other soft com
puting methods) should be treated as computationally intelligent systems. 
This means that the systems of this kind are intelligent in the sense of 
Computational Intelligence rather than Artificial Intelligence. The name 
intelligent computational systems [420] is also suitable. It emphasizes that 
these systems are realized as computer programs that can solve various 
(computational) problems and possess some attributes of intelligence, for 
example knowledge acquisition, inference, learning ability. However, the 
term computational may be viewed in a broader sense. In that, it does 
not necessarily refer to computations of numbers (numerical data) but also 
to symbolic (linguistic) information with regard to computing with words 
(CW); see Section 2.2.6. If the system applies a symbolic form of data, and 
incorporates knowledge, it can be treated as an intelligent system, not only 
in CI but also in AI. 

Intelligent computational systems should be constructed based on the 
soft computing methods such as fuzzy systems, neural networks, and ge
netic algorithms. The systems of this kind ought to be able to solve various 
problems, including classification and control tasks. A concept of an intel
ligent computational system is presented in Fig. 7.2. As we see, the main 
part is a fuzzy system with a fuzzifier and a defuzzifier. This means that 
input and output values are crisp (numerical) data. Neural networks (NNs) 
may be employed in different ways. First of all, they can be incorporated 
in a neuro-fuzzy architecture. Moreover, a neural network can play the role 
of a defuzzifier (Section 4.5.2). It is also possible to use a neural network 
to approximate the functions performed by elements of the first layer of 
the neuro-fuzzy architecture. This layer refers to a fuzzifier, in particular if 
the non-singleton fuzzification method is employed (Section 4.6). Besides, 
a learning algorithm is very often based on a neural network, especially if 
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a clustering network is used in order to generate fuzzy rules. If a neural 
network is applied as a defuzzifier, the back-propagation algorithm adjusts 
weights of the network to tune membership functions of antecedent and 
consequent fuzzy sets. The gradient learning algorithms, employed in order 
to optimize values of the weights or parameters of membership functions, 
can be supported by a genetic algorithm (GA). In addition, GAs may be 
used as a method of rule generation; see Section 6.4.3. 

NN,GA 

FIGURE 7.2. Basic schema of an intelligent computational system 

As mentioned in Chapter 1, neuro-fuzzy architectures plus hybrid learn
ing constitute intelligent systems. In particular, the neuro-fuzzy architec
tures presented in this book, with a learning algorithm can be viewed as 
intelligent computational systems. Figure 7.3 portrays the way of realiz
ing the systems of this kind, according to the conception illustrated in 
Fig. 7.2. A fuzzy system combined with a neural network creates a form of 
a neuro-fuzzy architecture. The learning ability of the neuro-fuzzy system is 
performed by means of a hybrid method, which is a neural network training 
with support by a GA. The neuro-fuzzy system with the learning ability 
can be treated as an intelligent computational system. In general, the hy
brid learning should include a rule generation algorithm and a method of 
parameter tuning; see Sections 6.4.3 and 6.4.2. 

Different neuro-fuzzy architectures have been presented in this book. 
Each of them can be trained by various learning methods, usually hybrid 
ones. Thus many kinds of intelligent computational systems may be created. 
They can solve specific problems after a proper learning process. Some 
examples of their applications have been described in Sections 5.5 and 
6.5.3. 
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It should be noted that the same neuro-fuzzy architectures with the same 
learning methods can be employed to solve various kinds of problems, for 
instance, control and classification tasks; see also [435] . Since control and 
classification problems differ from each other, they usually require different 
neuro-fuzzy architectures applied in order to solve these problems. These 
architectures are constructed based on the fuzzy IF-THEN rules, which dif
fer in the consequent part, depending on the task under consideration. The 
NEFCON and NEFCLASS systems described in Section 6.5.1 are examples 
of these. 

Intelligent computational systems should be able to solve different kinds 
of problems. Possessing such an ability, they resemble general problem 
solvers, understood as systems (computer programs) designed not for spe
cific tasks but as tools for various applications. These kind of systems are 
important from the viewpoint of Artificial Intelligence; however, they are 
usually difficult to implement. The intelligent computational systems pre
sented in this book may be viewed as examples of their successful imple
mentations. The systems of this kind can play the role of expert systems 
as well as intelligent controllers (see e.g. [377]) and can be realized in a 
software or hardware form, similarly to neural networks. 

1-----------1 

Neuro-fuzzy + Hybrid 1 
1 architectures learning 

L: ___________ I 
-- Intelligent 

computational 
systems 

FIGURE 7.3. Architectures plus learning as intelligent systems 

The concept of intelligent computational systems, presented in this sec
tion, is based on a synergy of fuzzy systems, neural networks, and ge
netic (evolutionary) algorithms. Neuro-fuzzy-genetic combinations are con
sidered e.g. in [303], [2], [582], [223]. Different forms of integration of fuzzy 
systems with neural networks, including GAs, are described in [493]. Other 
papers on the subject of creating intelligent systems as a fusion of these 
methods, can be found in the literature, e.g. [86]. As mentioned in Sec
tion 7.1, neural networks, fuzzy systems, and genetic algorithms are soft 
computing methods. They should be viewed as complementary rather than 
competitive tools for constructing systems in CI or AI. It should be noted 
that each of these methods has some advantages as well as drawbacks; 
for details, see e.g. [303]. Incorporating several methods in one intelligent 
system allows to utilize their merits and reduce (or avoid) disadvantages, 
resulting in better performance of the system. 
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7.4 Perception-Based Intelligent Systems 

According to the definition adapted from [447] and cited in [172], the aim of 
artificial intelligence is to develop paradigms or algorithms that allow ma
chines to perform tasks that involve cognition when performed by humans. 
In this statement the term cognition is purposely used rather than intel
ligence. Thus the tasks tackled by artificial intelligence include perception 
and language as well as problem solving, conscious as well as subconscious 
processes [322]. There are many definitions of artificial intelligence. How
ever, it seems to be obvious that perception as well as language plays an 
important role in intelligent systems created within artificial or compu
tational intelligence (Section 7.1). Thus a theory that incorporates both 
perception and language, and can be applied to intelligent systems, is con
sidered in this section. 

The computational theory of perceptions (CTP), introduced by Zadeh 
[577], [578], is based on the methodology of computing with words (CW) , 
presented in Section 2.2.6, in Chapter 2. In CTP, words play the role of 
labels of perceptions. The assumption is that perceptions are described in a 
natural or synthetic language. Humans employ mostly words in computing 
and reasoning. Thus, in CTP, perceptions are expressed as propositions in a 
natural language, and then translated into so-called Generalized Constraint 
Language (GCL). 

Both CW and CTP are inspired by the remarkable human capability to 
perform a wide variety of physical and mental tasks without any measure
ments and any computations [577], [578]. 

The relationship between CW and CTP can be simply explained as fol
lows. In CTP perceptions and queries are expressed as propositions in a 
natural language. Then, the propositions and queries are processed by CW
based methods to yield answers to queries. 

The two core issues concerning OW have been mentioned in Section 2.2.6, 
i.e. the issue of representation of fuzzy constraints and the issue of fuzzy 
constraint propagation. Both of them will be considered with reference to 
CTP. 

In CTP, reasoning with perceptions is a process of arriving at an answer, 
a, to a specific question, q, given a collection of perceptions as propositions 
expressed in a natural language. This process of reasoning is viewed as the 
constraint propagation from premises to a conclusion, which plays the role 
of an answer to a question. The following very simple example illustrates 
this process. Let us assume that the premises are the perceptions 

PI: Thomas is young 

P2: John is a few years older than Thomas 
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and the question is 

q: Howald is John? 

Explicitation of PI and P2 leads to the constraints 

PI --; Age ( Thomas) is young 

P2 --; (Age (John) .Age (Thomas)) is few.years.older 

The answer, a, to the question, q, obtained by constraint propagation, is 

a (q): young + few 

In this expression, young and few play the role of fuzzy numbers and 
their sum can be computed through the use of fuzzy arithmetic [247]. The 
presented example of reasoning with perceptions comes from [578]. 

The first step of the reasoning in CTP concerns a description of the given 
perceptions as propositions expressed in a natural language, resulting in the 
initial data set. The second step involves translation of the propositions 
in the initial data set into the generalized constraint language (GCL), to 
obtain the antecedent constraints (fuzzy constraints in premises) in explicit 
canonical forms. The third step pertains to translation of the question into 
GCL; the result is an explicit form of the question, i.e. the canonical form. 
The fourth step is an augmentation of antecedent constraints, resulting in 
the augmented data set, which consist of constraints induced by the initial 
data set and the external knowledge base (also formulated as propositions). 
Application of the rules governing generalized constraint propagation to 
constraints in the augmented data set leads to consequent constraints in 
the terminal data set, which refers to the constraints in conclusion. The 
fifth step, which is the last one, involves retranslation of the consequent 
constraints into the answer, a, to the question, q. This process of reasoning 
with perceptions is illustrated in Fig. 7.4. 

A general schema that shows the relationship between CW and CTP is 
depicted in Fig. 7.5. Perceptions in the initial perception set are converted 
into propositions which describe them. The obtained set of the propositions, 
represented in a natural language, constitutes the initial data set, which is 
processed by CW-based methods. As a result, the terminal data set, which 
contains the consequent constraints (see Fig. 7.4), is inferred. Then, the 
terminal data set is retranslated into the answer, a, to the question, q. 

Comparing Fig. 7.5 with Fig. 7.4, we see the CW-based methods realize 
the following tasks. Propositions in the initial data set are converted into 
their canonical forms, expressed in the generalized constraint language 
(GCL) which defines the meaning of these propositions. The collection of 
the canonical forms constitutes the initial constraint set (antecedent con
straints). Then, the initial constraint set is augmented with canonical forms 
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step I step 2 

perceptions ----> 
initial data set -- antecedent -(propositions) constrains 

question -- canonical fonn I- knowledge 
q (in GCL) base 

step 4 

'" .J ~ 
V 

step 3 augmented 
data set 

.1 

terminal consequent 
data set constraints 

step 5 

answer 
a(q) 

FIGURE 7.4. Basic schema of reasoning with perceptions 

of those propositions in the external knowledge base which are needed to de
rive the answer, a, to the question, q. By successive application of the rules 
of generalized constraint propagation, the generalized constraints which are 
resident in the resulting augmented initial constraint set are transformed 
into a terminal constraint set, which is the canonical form of the question, q. 

In CTP, reasoning is viewed as a form of computation. As was pointed out 
already, computation with perceptions is based on propagation of genera
lized constraints from premises (antecedent propositions) to conclusions 
(consequent propositions). The representation of the meaning of propo
sitions is drawn from a natural language as a constraint on a variable. A 
variety of constraints of different types can be used. This is what underlines 
the concept of a generalized constraint, introduced in [572J. 

CTP 

cw 

FIGURE 7.5. Illustration of the relationship between CW and CTP 
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A generalized constraint is represented as 

X isr R 

where isr (pronounced "ezar") is a variable copula which defines the way 
in which R constrains X. Let us explain more specifically: the role of R in 
relation to X is defined by the value of the discrete variable, r, which can 
take the following values, interpreted as listed below 

e equal; abbreviated to = 
d disjunctive (possibilistic); abbreviated to blank 
v veristic 
p probabilistic (probability distribution) 
>. probability value 
r s random set 

r f s random fuzzy set 
fg fuzzy graph 
ps rough set 

The list of values presented above can be extended to include other 
values. All of them represent different constraints. The first one is an 
equality constraint, which means that r = e, and ise is abbreviated to 
=. The second constraint is disjunctive (possibilistic); r = d and isd is 
abbreviated to is, leading to the expression 

X isR 

in which R is a fuzzy relation which constrains X, and in this case R defines 
the possibility distribution of X, implying that 

Poss {X = u} = JLR (u) 

where JLR is the membership function of R, and X takes values in a universe 
of discourse, U = {u}. 

The veristic constraint, r = v, refers to R as the verity (truth) distribu
tion of X. The expression 

X isvR 

means that if the grade of membership of u in R is JL, then X = u has 
truth value JL. For example, a canonical form of the proposition 

Stephan is half Pole, quarter German and quarter Czech 

may be written as 

Ethnicity (Stephan) isv (0.51 Pole + 0.251 German + 0.251 Czech) 
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in which 0.5, 0.25, 0.25 represent, respectively, the truth values of the propo
sitions Stephan is a Pole, Stephan is a German, Stephan is a Czech. 

In the probabilistic constraint, r = p, we assume that X is a random 
variable and R is its probability distribution. For example 

X isp N (m, 0') 

where X is a real-valued random variable which is normally distributed 
with mean m and variance o. 

In the probability value constraint, r = >., the formula 

X is>. R 

signifies that what is constrained is the probability of a specified event, 
X is A. More precisely 

X is>. R -t Prob {X is A} is R 

For instance, if A = tall and R = likely, then X is>. likely means that 
Prob{X is tall} is likely. 

The random set constraint, r = rs, is a composite constraint which is a 
combination of probabilistic and possibilistic (or veristic) constraints. The 
expression 

X isrs R 

results from the probabilistic constraint 

Y isp P 

and the joint possibilistic constraint on X and Y 

(X,Y) is Q 

or the joint veristic constraint on X and Y 

(X, Y) isv Q 

respectively; where R is a random set, that is, a set-valued random variable. 
It is worth mentioning that the Dempster-Shafer theory of evidence [463] 

is, in essence, a theory of random set constraints. 
The random fuzzy set constraint, r = r / s, refers to the case in which X is 

a fuzzy-set-valued random variable and R is its fuzzy-set-valued probability 
distribution. 

The fuzzy graph constraint, r = /g, pertains to the situation where R 
defines a fuzzy graph and X is a function which is approximated by R. 
More specifically, in the expression 

X isfg R 
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if X is a function, U -t Z, defined by a collection of fuzzy IF-THEN rules, 
i.e. the following fuzzy rule set 

IF u is Al THEN z is BI 

IF u is A2 THEN z is B2 

IF u is An THEN z is Bn 

where Ai and Bi , for i = 1, ... ,n, are linguistic values of u and z, respec
tively, in U and Z, then R is the fuzzy graph 

where Ai x Bi is the Cartesian product of Ai and Bi , and symbol + rep
resents disjunction or, more generally, an S-norm; see Section 2.2.5, in 
Chapter 2. 

A fuzzy graph constraint may be represented as a possibilistic constraint 
on the function which is approximated. Thus 

For a more detailed explanation of the above conclusion, see [576). 
The rough set constraint, r = ps, incorporates the concept of a rough 

set [380), [381). Other examples of generalized constraints can be found in 
[574), [577), [579). 

The constraint X isr R is referred to as a canonical form of a proposition 
expressed in a natural language. The canonical form places in evidence the 
variable, X, that is constrained, and the constraining relation R, as well 
as the way, r, in which R constrains X. It makes explicit the constraint 
that is usually implicit in the proposition. Equivalently, we can say that 
explicitation may be viewed as a translation of the proposition into the 
language of canonical forms (Le. GCL). Explicitation mayor may not be 
simple, depending on the complexity of the proposition. In general, explici
tation can be carried out through the use of test-score semantics (see [570), 
[574)). 

In CW, the starting point is a collection of propositions which play 
the role of premises. In many cases, the canonical forms of these propo
sitions are constraints of the basic, possibilistic type. Both X and R are 
assumed to be expressed in words. For example, in Thomas is young, 
X = Age (Thomas), and R = young. 

It was mentioned, in Section 2.2.5, that the principal types of granules 
are: possibilistic, veristic and probabilistic. The concept of generalized con
straints, presented here, provides a basis for this classification of fuzzy 
granules. To illustrate this idea, let us explain that a granule is viewed as a 
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clump of points characterized by a generalized constraint. Thus a granule 
denoted by G is expressed as 

G = {X I X isr R} 

In this context, the type of a granule is determined by the type of constraint 
which defines it. The possibilistic, veristic and probabilistic granules are 
defined, respectively, by possibilistic, veristic and probabilistic constraints. 
The following are examples 

G = {X I X is big} 

is a possibilistic granule. Analogously, 

G = {X I X isv big} 

is a veristic granule, and 

G = {X I X isp N(m,O")} 

is a probabilistic (Gaussian) granule [576]. 
It was said in Sections 2.2.5 and 2.2.6 that the concept of a granule plays 

a pivotal role in CW, since a word (for example, big) is treated as a label 
of a fuzzy granule. It was also emphasized that a key role in CW is played 
by fuzzy constraint propagation from premises to conclusions. It was also 
mentioned in this section that fuzzy constraint propagation is the latter of 
two core issues concerning CW; the former is the issue of representation of 
fuzzy constraints, already described. 

Once the propositions in the initial data set are formulated in their 
canonical forms, the groundwork is laid for fuzzy constraint propagation. 
The rules governing constraint propagation are, in effect, the rules of in
ference in fuzzy logic. However, it is helpful to have additional rules that 
govern fuzzy constraint modification. 

The simple example of reasoning with perceptions, presented in this sec
tion, employed the inference rules of fuzzy logic. Another, similar example 
which illustrates the use of these rules comes from [574]. The propositions 
are formulated as follows 

PI: most students are young 

P2: most young students are single 

The question might be 

q: How many students are single? 
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The conclusion (answer) drawn from Pl and P2, using the inference rules 
of fuzzy logic, is 

a (q) : most2 students are single 

where most2 represents the square of the fuzzy number most in fuzzy arith
metic (see also Section 2.2.3). 

As mentioned before, the rules of constraint propagation, basically, co
incide with the rules of inference in fuzzy logic. These rules are presented 
in [574], [577], [578], [579]. They are written in such a way that antecedent 
and consequent constraints are separated by a horizontal line. For instance, 
assuming that X E U, A c U, Y E V, B c V, the following two inference 
rules are examples of conjunctive rules for possibilistic constraints 

X is A 
X is B 

X isA 
X is B 

X is AnB (X,Y) is A x B 

Similar, disjunctive rules have the form 

X is A 
X isB 
X is AUB 

X is A 
X isB 
(X, Y) is A x V U B x U 

The compositional rule is expressed as 

X is A 
(X, Y) is B 
Y is AoB 

where A 0 B denotes the composition of A and Bj see Section 2.2.1 and 
Definition 26. This is a basic rule of inference in fuzzy logic. In a simplified 
form, A is a value of a linguistic variable, e.g. X is big, and B is a fuzzy 
relation on (X, Y). 

Other examples, as well as general forms of the rules for the generalized 
constraints, can be found in the literature cited above. Among them, there 
is a principal rule of inference in CTP, i.e. the generalized extension princi
ple, which plays a pivotal role in fuzzy constraint propagationj see also the 
extension principle described in Section 2.1.1. For possibilistic constraints, 
this rule may be formulated as follows 

f (X) is R 
9 (X) is 9 (J 1 (R)) 

where f (X) is R plays the role of an antecedent constraint, i.e. an 
explicitation of a given perception or perceptions, X is the constrained 
variable, f and 9 are given functions, R is a relation that constraints f (X), 
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and 1-1 (R) is the preimage of R. In effect, I (X) is R is a generalized 
constraint that represents the information conveyed by antecedent per
ception(s), while g (X) is g (J-l(R)) defines the induced generalized 
constraint on a specified function of X. An illustration, including a simple 
example, concerning this rule is depicted in [578]. 

According to Zadeh [578]: "CTP may be viewed as a first step toward the 
development of a better understanding of ways in which the remarkable hu
man ability to reason with perceptions may be mechanized. Eventually, the 
ability of a machinery for computing with perceptions may have a profound 
impact on theories in which human decision-making plays an important 
role. Furthermore, in moving countertraditionally from measurements to 
perceptions, we may be able to conceive and construct systems with higher 
degree of machine intelligence (MIQ - Machine Intelligence Quotient) than 
those we have today." 

The computational theory of perceptions (CTP), described in this sec
tion, suggests a new direction in Artificial Intelligence (AI). However, CTP 
is complementary rather than competitive to other methodologies developed 
in AI [579]. It should be emphasized that CTP is not intended to replace tra
ditional measurement-based methods. In effect, CTP provides an additional 
tool which complements rather than competes with standard methods. 

As mentioned earlier, the importance of CTP derives from the fact that 
much of human decision-making and commonsense reasoning is, in reality, 
perception-based. Thus it seems to be obvious that systems described by 
a collection of linguistic IF-THEN rules, in which values of the variables 
are fuzzy granular perceptions, and the inference incorporates CTP, can be 
applied as perception-based intelligent systems in AI. 
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It should be noted that the "pure" fuzzy system, depicted in Fig. 2.19, is a 
special case of perception-based systems, considered in Section 7.4. Since 
this system, with a fuzzifier and a defuzzifier, can be represented in the 
connectionist form of a neuro-fuzzy system, it seems that perception-based 
systems, or at least some types of them, may also be combined with neural 
networks to create perception-based neura-fuzzy systems. These systems 
might be trained using different hybrid learning methods. Having learning 
ability makes these systems even more " intelligent." It would be interesting 
to combine these systems with fuzzy neural networks (see Section 3.2), and 
include genetic (evolutionary) algorithms to support the learning process. 
Fuzzy neural networks that process granular information refer to granular 
neural networks [388]. Networks of this kind may be applied with reference 
to perception-based systems, since the latter also use information granula
tion. 

Perception-based systems may be realized employing different forms of 
neuro-fuzzy combinations [493] with granular neural networks or as granu
lar neuro-fuzzy architectures with hybrid learning. Perception-based model 
of a system would consist of a collection of linguistic IF-THEN rules of the 
generic form, for example [579] 

IF X t is At AND St is Bt THEN St+l is Ct AND Yt is Dt 

for t = 1,2, ... , where Xl, X 2 , ... are inputs, YI , Y2 , ... outputs, and 
Sl, S2, ... states of the system, defined by the state transition function, /, 
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as follows 

and the output function, g, as 

In perception-based system modeling, the inputs, outputs, and states are 
assumed to be perceptions, as are the state transition function, j, and the 
output function, g. Thus in the collection of IF-THEN rules, At, B t , Ct, 
Dt , for t = 1,2, ... , are fuzzy granular perception of the values X t , St, 
St+l, yt, respectively. 

The example presented above shows that perception-based systems can 
be expressed in the form of IF-THEN rules with variables that take values 
which are fuzzy granules. This model is similar to the description of a 
fuzzy system in the form of IF-THEN rules in which the values of linguistic 
variables are fuzzy sets. As a matter of fact, the latter can be treated as a 
special case of a perception-based system. It should be noted that the fuzzy 
sets that are values of the linguistic variables in classical IF-THEN rules are 
also fuzzy granules. Thus many results obtained for classical fuzzy sets can 
be extended to perception-based systems. In this context, it seems that the 
Mamdani and logical approach to fuzzy inference (Section 2.3.2) should 
be considered with reference to perception-based systems. In particular, 
the logical approach might be useful since those fuzzy systems based on 
logical implications are more suitable for expert systems than for control 
systems. It is worth mentioning that among the inference rules of constraint 
propagation (see Section 7.4) there is the following [577], generalized modus 
ponens rule 

X is A 
IF X is B THEN Y is C 

X is Ao (EffiC) 
where the bounded sum 13 ffi C represents Lukasiewicz's definition of im
plication (see Section 2.2.2). 

It was explained in Section 7.3 that neuro-fuzzy architectures plus hybrid 
learning constitute intelligent computational systems that are intelligent 
systems in the sense of computational intelligence (see Section 7.1). The 
neuro-fuzzy systems which are perception-based systems, with a learning 
algorithm, may be fully treated as intelligent systems in the AI sense, be
cause they process symbolic (not only numerical) information is in the form 
of fuzzy granules. 

Since fuzzy sets were introduced by Zadeh [559] in 1965, researchers have 
found numerous ways to utilize this theory to generalize existing techniques 
and to develop new algorithms. In this way fuzzy neural networks, fuzzy 
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clustering methods, fuzzy genetic algorithms, fuzzy expert systems, etc. 
have appeared. Together with the theoretical research, we have witnessed 
many important applications of fuzzy and neuro-fuzzy systems, based on 
fuzzy sets and fuzzy logic. It seems natural that fuzziness can be incor
porated everywhere since the world is fuzzy. Now, in the new millennium, 
we will probably observe a new progressive trend in the area of AI, with 
reference to the conception of perception-based systems initiated by Prof. 
L. A. Zadeh. 

A recent idea of incorporating fuzziness in existing methods, suggested 
for the new millennium [507], pertains to type 2 fuzzy sets, defined by Zadeh 
[565], [567]; see Section 2. Fuzzy sets of this kind have been investigated 
by other authors, e.g. [334], and applied [540], [511], [230], in particular 
to fuzzy systems [506], [238], [240], [239], [298], [299], [445]. It is stated in 
[323] that type 2 fuzzy sets, and type 2 fuzzy logic [238] are more suitable 
for CW, described in Sections 2.2.6 and 7.4, than type 1 fuzzy sets and 
fuzzy logic. Thus type 2 fuzzy sets have already been introduced to fuzzy 
and neuro-fuzzy systems, as well as to learning methods, e.g. to clustering 
[233]. The implication-based neuro-fuzzy systems presented in this book 
may also be considered using type 2 fuzzy sets, i.e. with fuzzy membership 
functions. 

Fuzzy and neuro-fuzzy systems have been widely applied as fuzzy (neuro
fuzzy) controllers but also as fuzzy (neuro-fuzzy) classifiers. It is stated in 
[275] that fuzzy systems can be treated as probabilistic systems. In [228] 
a functional equivalence between fuzzy systems and RBF networks is pre
sented; also see Section 4.1. Fuzzy systems can also be represented, under 
certain conditions, in the form of the standard neural network [421], [426]. 
It has been shown that RBF networks are asymptotically Bayes-optimal 
classifiers by proving their equivalence to the kernel type of nonparamet
ric statistical classifiers [48], [95], [283]. Thus we can conclude that fuzzy 
systems are also asymptotically Bayes-optimal classifiers [284]. Moreover, 
neural networks can be considered as probabilistic neural networks (see 
[477] as well as e.g. [379] Chapter 13, and [337], [444]). As we see, the di
rection to combine different methods, i.e. fuzzy system, neural networks, 
Bayesian classifiers, and others, in one intelligent system seems to be rea
sonable and should be a subject of further research to incorporate archi
tectures and learning algorithms into the systems created in the area of 
artificial (computational) intelligence. 

The intelligent systems considered in this book can also be applied to 
multi-agent systems (see e.g. [252], [522]), in which different intelligent 
systems cooperate with each other as intelligent agents. The emerging op
portunity of just such an application of hybrid expert systems, mentioned 
in Section 7.2.2, has been noted in [321], where also other soft computing 
techniques, i.e. fuzzy logic and genetic algorithms, are suggested to com
plement the hybrid systems. 
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